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Abstract

Schubert varieties are subvarieties of the flag variety F`n(C), a smooth complex
projective variety consisting of sequences of sublinear subspaces of an n-dimensional
complex vector space, ordered by inclusion. They are indexed by permutation ma-
trices and studied in various types with important roles in algebraic geometry
due to their combinatorial structures. The smoothness and singularity of Schu-
bert variety have been characterised by various methods using the elements of the
n-dimensional symmetric group. However, characterising smoothness using the ex-
ponents of the monomial of the Schubert variety and Plücker coordinate which
uniquely and clearly identifies the symmetry of the Poincaré polynomial have not
been established. Hence this research aims at establishing smoothness and singu-
larity of type A Schubert varieties using the exponents of the monomials of the
Schubert variety and the Jacobian criterion on the equations of the ideals of the
Schubert variety obtained via the Plücker embedding.

For the Schubert varieties Xσ, the cohomology of the flag varieties
f : Hn−k(F`n(C);Z) → Hk(F`n(C);Z) defined by f [Xσ] = [Xσ] ∈ Hk(F`n(C))

was considered, to obtain its monomials. The Poincaré polynomial was deter-
mined in order to compute the symmetry of the Schubert varieties. The flag vari-
eties are embedded into the product of Grassmanians which is also embedded into
the product of projective spaces given by the embedding map F`n(C) = Xσ ↪→

∏n−1
k=1 Gr(k, n) ↪→

∏n−1
k=1 P

 n

k

−1
. defined by A 7→ [P12, P13, · · · , P(n−1)n] , with

Pij, 1 ≤ i < j ≤ n being the

(
n

k

)
minors for Ak,n in Gr(k, n). The equations

of the ideal of the Schubert varieties were obtained by taking all the minors of the
matrix Schubert varieties. The rank of the Jacobian matrix and the co-dimension
of the Schubert varieties were determined.

The Schubert classes forms additive Z basis that generates the cohomology ring
Hk(F`4(C);Z). The basis for the cohomology ring are the geometric and algebraic
basis. The algebraic basic classes xi11 x

i2
2 · · · , ximm with exponents ij = m − j forms

Z basis for the cohomology ring and these basic classes are the monomials. The
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Poincaré polynomial Pσ(t) =
∑

v≤σ t
l(v) , defined with respect to the length function

and via the Bruhat order, v ≤ σ =⇒ l(v) ≤ l(σ) shows that the symmetry
Pσ(t) = trPσ(t−1) Of the Poincaré polynomial is palindromic or not palindromic.
The rank of the Jacobian matrix obtained using the equations of the ideal I(Xσ)

derived through the embedding map is found to be equal to the co-dimension of
the varieties which indicates smoothness.

The exponent of the monomials xi11 x
i2
2 · · ·ximm of the Schubert variety Xσ have

uniquely satisfied the symmetry of its Poincaré polynomial for smooth Schubert va-
rieties and have successfully extended the underlying group from Sn to Zn

+. Smooth-
ness has successfully been generalised in terms of the differential equations using
the equations defining the ideals, of the Schubert varieties through the Plücker
coordinates.

Keywords: Flag varieties, Cohomology, Bruhat order, Monomials exponent.

Word count: 497
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Chapter 1

INTRODUCTION

1.1 Background of the study

Schubert varieties are certain subvarieties of Grassmann varieties. They are usually
singular points. We review and extend smooothness of type A Schubert varieties
in terms of the exponents of the monomials of the varieties and the equations
defining the ideals of the Schubert varieties by means of the Poincaré palindromic
polynomials and the Plücker coordinate methods.
Schubert varieties are both combinatorial and algebraic varieties. Combinatorial
varieties are the different arrangements of different objects that gives a set of so-
lutions while algebraic varieties are sets of solutions of a polynomial equation over
the real or complex numbers. They are subvarieties of the flag varieties and are
studied in various types by the means of linear algebra with the Gl(n,C) as the
underlying group for type A Schubert varieties. The flag varieties are G-varieties,
due to their transitive group actions. They are also seen as homogenoeus and com-
pact homogenoeus spaces because they can be identified with the quotient group
G/B and Gl(n,C) which is locally compact contains compact subgroups such as
U(n,C) that also act transitively on the flag varieties by left multiplication, giving
the dimension of the flag to be n(n−1)

2
.

The flag varieties are also seen from the angle of the T -fixed points. These are
n factorial flags associated to permutation matrices. The elements of F`n(C)T

embeds in F`n(C) as the set of the T-fixed points, F`n(C)T ∼= W ∼= Sn . The
elements of W index B-orbits n! flag varieties G/B and together they form the
Bruhat decomposition Theorem. The flag varieties are partitioned into cells arising
from double Cosets, that is ,

F`n(C) = G/B =
∐
σ∈Sn

BσB/B =
∐
σ∈Sn

Cσ. (1.1)

called the Bruhat cells (Schubert cells) that is isomorphic to affine space of dimen-
sion l(σ). The closure of these cells is called the Schubert variety. The classes of the
closure forms additive Z basis that generates the cohomology ring with basis classes
called the Schubert classes. The basis for the cohomology ring are the geometric

1



and algebraic basis. The algebraic classes are the monomials. The exponents of
these monomials and the equations used to define the ideals are then used to show
smoothness of the varieties respectively.
Chapter two contains the basic definitions needed to aid proper understanding of
this work. It also provides some conceptual reviews of the connected literatures
in the area which helps to establish a mathematical background for understanding
the concepts of smoothness of the Schubert varieties. Chapter three discusses
the methodology adopted from the literatures in establishing smoothness. The
applications of the methodology to the exponents of the monomials of the Schubert
varieties and the equations defining the ideals of the Schubert varieties provides
answers to the research problems.

1.2 Statement of the Problem

Lakshmibai & Seshadri (1984) showed that Xσ is smooth at v ∈ Sn if and only
if dimTv(Xσ) := ]{(i < j) : vtij ≤ σ} = l(σ) which is also equivalent to ]{(i <
j) : v < vtij ≤ σ} = l(σ) − l(v). This gave rise to the Theorem of Lakshmibai
& Seshadri (1984) that for v ≤ σ ∈ Sn, the tangent space of Xσ at v is given by
dimTv(Xσ) = ]{(i < j) : vtij ≤ σ}.

Lakshmibai & Sandhya (1990) gave a criterion for a Xσ to be singular, they
stated that Xσ is singular iff σ contains the 3412 or 4231 permutation pattern
otherwise it is smooth. Also Carrell (1994) gave a criterion for computing the
smooth and singular Schubert varieties in terms of any permutation σ ∈ Sn, then
Xσ is smooth if the Poincaré polynomial is palindromic.

We show smoothness and singularity of type A, Schubert varieties using the
exponents of the monomials of the Schubert varieties. The problem is presented in
the following Theorem:
Theorem 1.2.1. Let σ ∈ Zn+ be the monomial exponent of the Xσ, then the fol-
lowing are equivalent:

1. The Schubert variety Xσ is rationally smooth at every point (since smoothness
in type A is equivalent to rational smoothness).

2. The Poincaré polynomial Pσ(t) is Palindromic (Symmetric) .

3. The Bruhat graph Γ(id, σ) is regular, that is every vertex has the same number
of edges, l(σ).

Smoothness and singularities of Schubert varieties are determined in type A,
by means of the Jacobian criteria on the defining equations of the ideal of the
Schubert varieties. as given in the following Theorem:
Theorem 1.2.2. Let Sn be the symmetric group of n letters with σ, v ∈ Sn such
that σ is of maximal length. Then the Schubert variety Xσ is smooth if

R(J(I(Xσ))) = l(σ)− l(v). (1.2)

2



1.3 Aims

Lakshmibai & Seshadri (1984), determined the singularity of Schubert varieties by
computing the set of points for which the Schubert varieties are singular. Smooth-
ness and singularity of Schubert varieties were computed by Lakshmibai & Sand-
hya (1990) using permutation pattern avoidance, for the elements of the symmetric
group. They described this as the 4231 and 3412 permutation pattern avoidance.
Carrell (1994) described smoothness and singularity of Schubert varieties through
the Poincaré polynomials of the Schubert varieties. He stated that the Schubert va-
rieties are smooth iff their Poincaré polynomials are Palindromic. Oh et al. (2008)
worked on the fact that Pσ(q) = Rσ(q) iff the Schubert variety Xσ is smooth and
also Woo & Yong (2008) formulated a new combinatorial notion which generalised
pattern avoidance and it was called the interval pattern avoidance,

The main purpose for this study is to evaluate smoothness and singularity of
Schubert varieties using the exponents of the monomials and the equations defining
the ideal of the Schubert varieties.

1.4 Objectives of the Study

The objectives of this study are to:

• evaluate smoothness and singularity of Schubert varieties using the exponents
of the monomials of Xσ.

• establish that the equation defining the ideal of Xσ is always smooth at the
identity.

• characterise singularity of Schubert varieties using the equations defining the
ideal of the Schubert varieties.

• compare the defining equations for the ideal of the Schubert varieties, (Xσ)

with the equation of the ideal obtained through the essential set for Xσ.

1.5 Motivation of the Study

Motivated by the results of Lakshmibai & Seshadri (1984) , Carrell (1994), and the
recent work of Oh et al. (2008), it is natural to ask the following questions:

How do we characterise smoothness of type A Schubert varieties using the:

• exponents of the monomials of the Schubert varieties?

• equations defining the ideal of the Schubert varieties?

3



1.6 Justification

Schubert varieties are singular algebraic varieties. They are subvarieties of the
smooth complex projective varieties consisting of sequences of an n-dimensional
complex vector space ordered by inclusion. The smoothness and singularities of
Schubert varieties have been characterised by various methods using the elements
of the n-dimensional symmetric group.

However, characterising smoothness using the exponents of the monomials of
the Schubert varieties have not been given much attention by authors in this area
of research. Hence, this work establishes smoothness of Schubert varieties using
the exponents of the monomials of the Schubert varieties. This extend the result
of Carrell (1994) to the positive finite intergers.

The smoothness of type A Schubert varieties using the defining equations
of the ideal of the Schubert varieties is seen to be equivalent to smoothness in
differential equations. The present study has applications in the area of graph
theory, networking, permutation patterns and reduced words .

1.7 Significance of the Study

This research work gives details on the smoothness and singularity of Schubert
varieties. It reviews and extends the work of Carrell (1994). In addition it shows
that smoothness in algebraic geometry is same as that of differential equations.

1.8 Scope of Coverage

This work comprises of many aspects of group theory, linear algebra, topology,
representation theory and algebraic geometry among others.

1.9 Organisation of the Thesis

This research work is organised as follows: Chapter One contains a comprehensive
and general introductory perception to the main work in type A. In the same
chapter the motivation for undertaking this work is stated, the aims, objectives
and the problems that we intend to provide answers to are provided. Chapter
Two centers mainly on the basic definitions and general review of the literature
materials based on the concept of our interest.

In Chapter Three the methodology used to carry out the research is described.
While Chapter Four discusses the main results obtained. Chapter Five contains the
summary of findings, conclusion, contributions to knowledge and area of further
work.

4



Chapter 2

LITERATURE REVIEW

2.1 Preamble

This chapter reviews various concepts and results that are found in the literatures
needed in this area of research.

2.2 Flag Varieties

Schubert varieties are combinatorial subvarieties of the flag varieties, hence we
begin this session by considering flag varieties and their properties.

Definition 2.2.1. Let V = Cn, which denotes a complex vector space of dimension

n, A flag V• in Cn is a sequence of ordered subspaces,

V• : V0 ( V1 ( V2 ( · · · ( Vn = V (2.1)

3 dimCVi = i where 0 ≤ i ≤ n.

Remark 2.2.2. The set of all such flags forms a smooth complex projective variety

called the full flag variety denoted by F`n(C).

Remark 2.2.3. The flag varieties are smooth complex projective varieties because

they can be embedded into the products of the grassmannians which are embedded

into the products of higher dimensional projective spaces by means of the plücker

embedding map.

F`n(C) ↪→
n−1∏
k=1

Gr(k, n) ↪→
n−1∏
k=1

P

 n

k

−1
. (2.2)

5



Definition 2.2.4. Let

V• : V0 ( V1 ( V2 ( · · · ( Vn = Cn (2.3)

then the standard basis for V = 〈e1, e2, · · · , en〉 and the standard flag for the flag

V• ∈ V is given by

V• = {} ( 〈e1〉 ( 〈e1, e2〉 ( 〈e1, e2, e3〉 ( · · · ( 〈e1, e2, e3, · · · , en〉 . (2.4)

2.2.1 Algebraic Description of a Flag

Let G = Gl(n,C) = {Mn×n ∈ Cn} be non singular.
Given a flag

V• : V1 ( V2 ( · · · ( Vn = Cn (2.5)

where V1 is a line spanned by a vector, V2 is a plane containing a line and so on,
hence (2.5) is spanned by the vectors

〈g1〉 ( 〈g1, g2〉 ( 〈g1, g2, g3〉 ( · · · 〈g1, g2, g3, · · · , gn〉. (2.6)

The matrix (g = g1, g2, g3, · · · , gn) represents a flag.

F`n(C) is described algebraically by considering G = GLn(C), and B the
Borel subgroup of G, with

B = {aij ∈ GLn(C) 3 aij = 0, i > j}.
F`n(C) are G-varieties, since they admits a transitive group action of GLn(C),

G acts transitively on the set of all flags by left multiplication.

GLn(C)×F`n(C)→ F`n(C) (2.7)

defined by
(g, V•) 7→ gV• = V ′• . (2.8)

2.2.2 The Flag Satisfies the Properties of an Equivalence

Relation

Let G be a group with identity e and F`n(C) be the set of all flags. Let ? :

G×F`n(C)→ F`n(C) be a group action. Let RG be the relation induced by G that
is V•RGV

′
• implies V ′

• ∈ Orb(V•) where Orb(V•) denotes the Orbit of V• ∈ F`n(C)

6



Then RG is an equivalence relation .

To show equivalence relation, we must show that the relation RG is reflexive,
symmetric and transitive.

Let V•RGV
′
• implies V ′

• ∈ Orb(V•) where the Orbit(V•) = {gV• : g ∈ Gln(C)}
V

′
• ∈ Orb(V•) implies gV• = V

′
•∀g ∈ Gln(C)

Reflexive property:
V• = Vo ? V• implies V• ∈ Orb(V•). Therefore RG is reflexive.

Symmetric Property:
V

′
• ∈ Orb(V•) implies there exist a g ∈ G : V

′
• = g ? V•

implies that g−1 ? (g ? V•) = g−1 ? V
′
• , therefore V• = g−1 ? V

′
•

there exist a g−1 ∈ G : V• = g−1 ? V
′
• which implies V• ∈ Orb(V

′
• )

Therfore RG is symmetric

Transitive property:
V

′
• ∈ Orb(V•) and V ′′

• ∈ Orb(V
′
• ) then there exist g1 ∈ G : V

′
• = g1V•

and g2 ∈ G : V
′′
• = g1V

′
•

V
′′
• = g2 ? (g1V•) and V ′′

• = (g2g1) ? V•) , which implies V ′′
• ∈ Orb(V•)

Thus RG is transitive.
Hence, the relation is equivalence.

2.2.3 Flag Varieties as a Homogeneous Space

Gln(C) acts transitively on the set of all flags F`n(C) and B is the Borel subgroup
of G, the stabilizer of the standard flag. B is the subset of an n × n non singular
upper triangular matrices, gB gives the same flag as g. Hence, the flag variety

F`n(C) = Gln(C)/B = {gB : g ∈ G} (2.9)

where each flag is a coset of the right action of B on G.
The flag varieties are seen to be associated to G/B, hence it is a homogeneous

space, since for any V• ∈ F`n(C) and g ∈ Gln(C) 3 gV• = V ′• ∈ F`n(C).

2.2.4 Flag Varieties as a Compact Homogeneous Space

The flag varieties F`n(C) can also be seen as a compact homogeneous space, since
there is an action of the closed compact subgroup of Gln(C) which is the Unitary
group Un(C) on F`n(C).
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The general linear group which is locally compact, contains compact subgroups
such as the unitary group, given by

Un(C) = {A ∈ Gln(C) : AA∗ = In} (2.10)

with T (Toroidal group) as the stabilizer of points. The unitary group acts transi-
tively on the flag,

F`n(C) = Un(C)/T n (2.11)

and this action results in F`n(C) becoming a compact homogeneous space with
dimension n(n−1)

2
.

2.3 T -Fixed Points

In this session we define the flag varieties in terms of the T -fixed points and also
show that the elements ofW ∼= Sn index B-orbit n! flag varieties and together they
form the Bruhat decomposition theorem .

Definition 2.3.1. (T -fixed points) The T -fixed points are flags associated to

permutation matrices.

Definition 2.3.2. Given that σ is a permutation in Sn, then the T -fixed points of

the flag V• is

V σ
• = 〈eσ(1)〉 ⊂ 〈eσ(1)eσ(2)〉 ⊂ · · · 〈eσ(1)eσ(2) · · · eσ(n)〉 (2.12)

defined by

V σ
• 7→ σB = {σB : σ ∈ G}, (2.13)

where σ is a permutation matrix. There are n! of these permutation matrices.

Example 2.3.3. Let σ = 2413 where σ ∈ Sn. The T -fixed point of the flag V σ
0

where σ = 2413 is

V σ
• = 〈eσ(2)〉 ⊂ 〈eσ(2)eσ(4)〉 ⊂ 〈eσ(2)eσ(4)eσ(1)〉 ⊂ 〈eσ(2)eσ(4)eσ(1)eσ(3)〉. (2.14)

Remark 2.3.4. The elements of F`n(C)T embeds in F`n(C) as the set of the T-

fixed points. F`n(C)T ∼= W ∼= Sn where W = NG(T ) is the normalizer of T on G
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and NG(T )/T consist of the monomial matrices with only one non-zero entry in

each row and each column.

The elements ofW index B-orbits n! flag variety G/B and together they form
the Bruhat decomposition theorem.

Theorem 2.3.5. [Curtis (1964)]

The general linear group G = Gln(C) is a disjoint union G =
∐

σ∈W BσB.

The flag varieties are partitioned into cells arising from double Cosets, that is

F`n(C) = G/B =
∐
σ∈Sn

BσB/B =
∐
σ∈Sn

Cσ (2.15)

called the Bruhat cell. Each Bruhat cell Cσ ∼= Cl(σ) where Cl(σ) is the affine space
and l(σ) is the length of σ. The length of σ is given by the number of inversions.

Definition 2.3.6. The inversion number of σ is a pair

(i, j) = ]{1 ≤ i < j ≤ n 3 σ(i) > σ−1(j)}. (2.16)

2.4 Schubert Varieties

This session comprises of the defintions and examples of the Schubert cell, Schubert
varieties and their duals. It also gives the properties of the Schubert varieties.

Definition 2.4.1. Schubert cell

The Schubert cell is defined by

Cσ = {g ∈ G : pos(g) = σ}. (2.17)

.

Definition 2.4.2. The geometric definition of the Schubert cell Cσ is given by

Cσ = {V0 ∈ F`n(C) | dim(Wp

⋂
Vq) = rσ(p, q), 1 ≤ p, q ≥ n}. (2.18)

{V0 ∈ F`n(C) | dim(Wp

⋂
Vq) = ]{i ≤ p : σ(i) ≤ q}for1 ≤ p, q ≤ n}. (2.19)

9



Let σ = 3425167 where σ(1) = 3, σ(2) = 4, σ(3) = 2, σ(4) = 5, σ(5) =

1, σ(6) = 6, σ(7) = 7 the Schubert cell is given by the matrix ,

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 1 0 0 0 0 0

0 0 0 0 1 0 0

1 0 0 0 0 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1


=



∗ ∗ 1 0 0 0 0

∗ ∗ 0 1 0 0 0

∗ 1 0 0 0 0 0

∗ 0 0 0 1 0 0

1 0 0 0 0 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1


The diagram above is the diagram of the Cσ for σ = 3425167. where a hook

of zero’s are drawn downwards and to the left of a 1-entry. The number of stars
gives the length of σ.

Therefore σ = 3425167, L(3425167) = 6.Cσ ∼= Cl(σ), C3425167
∼= C6.

Definition 2.4.3. The opposite Schubert cell denoted by Cσ is given by

Cσ = B−σB/B (2.20)

where B− is the subgroup of lower triangular matrices.

Let σ = 3425167 where σ(1) = 3, σ(2) = 4, σ(3) = 2, σ(4) = 5, σ(5) = 1,
σ(6) = 6, σ(7) = 7 the opposite Schubert cell is given by the matrix,

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 1 0 0 0 0 0

0 0 0 0 1 0 0

1 0 0 0 0 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1


=



0 0 1 ∗ ∗ ∗ ∗
0 0 0 1 ∗ ∗ ∗
0 1 0 0 ∗ ∗ ∗
0 0 0 0 1 ∗ ∗
1 0 0 0 0 ∗ ∗
0 0 0 0 0 1 ∗
0 0 0 0 0 0 1


The diagram above gives the opposite Cσ for σ = 3425167 . where a hook of zero’s
are drawn downwards and to the right of a 1-entry and the number of stars gives
the length of σ.

Therefore σ = 3425167, L(3425167) = 15.Cσ ∼= Cl(σ), C3425167
∼= C15 .

Definition 2.4.4. Schubert varieties

The Schubert varieties are the closure of the Schubert cells , they are denoted
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by

Xσ = C̄σ =
⋃
v≤σ

Cv. (2.21)

where v ≤ σ and the l(v) ≤ l(σ) .

Definition 2.4.5. Dual Schubert varieties

The dual Schubert varieties are the closures of the dual Schubert cells and they

are given by

Xσ = C̄σ =
⋃
v≥σ

Cv (2.22)

where the l(v) ≥ l(σ).

Remark 2.4.6. The Schubert varieties Xσ and Xσ are irreducible subvarieties of

the flag varieties F`n(C) of dimension l(σ) and n− l(σ) .

Lemma 2.4.7. [Fulton & Fulton (1997)]

The dimension of the flag variety is related to the dimension of Xσ and Xσ

by dim(Xσ +Xσ) = dimF`n(C).

2.5 The Partial Flag Varieties

This session comprises of the definition of the partial flag varieties with examples.
It gives details on the derivation of the equations defining the ideals of the Schubert
varieties by means of the Plücker coordinates and the Plücker embedding map.

Definition 2.5.1. A partial flag of type (i1, i2, · · · , ik) in Cn is a sequence of or-

dered subspaces,

{} ( Vi1 ( Vi2 ( · · · ( Vik = Cn (2.23)

such that the dimVij = ij, where 0 ≤ j ≤ k.

Remark 2.5.2. The set of all partial flags of type (i1, i2, · · · , ik) ∈ Cn forms a

smooth compact complex algebraic varieties called the partial flag varieties denoted

by. F`(i1, i2, · · · , ik;C).

2.5.1 The Grassmannian Varieties

The Grassmann varieties are the set of all k-dimensional subspaces of an n-dimensional
vector space V . They are denoted by Gr(k, n).
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Remark 2.5.3. • The Grammann varieties has the structures of smooth pro-

jective varieties, homogeneous spaces and complex compact manifolds.

• The Grassmann varieties are algebraic varieties, identified with the k- dimen-

sional projective space P(∧k∨).

Let {v1, v2. · · · , vn} be column vectors and let U ⊆ V be the span of these
columns vectors. Let {u1, u2, · · · , uk} ∈ U be ordered basis for U ∈ Gr(k, n). Thus
ui can be written as a linear combination

ui =
n∑
j=1

xijvj. (2.24)

This definition describes a k × n matrix A of rank k as,


x11 x12 · · · x1n

x21 x22 · · · x2n
...

... · · · ...
xk1 xk2 · · · xkn

 . (2.25)

For any sequence I : 1 ≤ i1 ≤ · · · ≤ ik ≤ n . The determinant of the maximal
minor corresponding to columns in I is called the plucker coordinate PI . The matrix
A has maximal rank therefore, at least one of the coordinate is non-zero. Changing
the basis of U has the effect of multiplying U on the left by a k × k non singular
matrix say B which implies each PI is multiplied by det(B). Therefore, we define
a map ,

π : G(k, n)→ P

n
k

−1
= PN (2.26)

by sending U to its collection of Plücker coordinates

π :< U >→ [P12···k,··· ,PI , · · · ]. (2.27)

Definition 2.5.4. The Plücker embedding is the map π : Gr(k, n) ↪→ P(n
k)−1 de-

fined by A 7→ [P1,2, P1,3. · · ·Pn−1,n] = P ∈ Pn−1, with Pi,j, 1 ≤ i < j ≤ n are the(
n
k

)
minors for Mk,n in Gr(k, n).

12



2.5.2 Equation Defining the Ideal of Schubert Varieties through

the Plücker Embedding Map

.
In this section the equation defining the ideal of the Schubert varieties embed-

ded in the product of the Grassmannians and also in the product of the projective
spaces is computed through the Plücker embedding map.

For n = 3, the Schubert variety X321 = F`3(C), since the dimension is com-
plete. The equation defining the ideal of the Schubert varieties embedded in the
Grassmannians and also embedded in the product of the Projective space is com-
puted as follows.

F`3(C) = X321 ↪→
n−1∏
k=1

Gr(k, n) ↪→
n−1∏
k=1

P

n
k

−1
. (2.28)

F`3(C) = X321 ↪→
3−1∏
k=1

Gr(k, 3) ↪→
3−1∏
k=1

P

3

k

−1
. (2.29)

F`3(C) = X321 ↪→
2∏

k=1

Gr(k, 3) ↪→
2∏

k=1

P

3

k

−1
= P2 × P2. (2.30)

Taking all the minors of the matrix Schubert variety, we have

x11 x12 x13

x21 x22 x23

x31 x32 x33

→ [p1 : p2 : p3 : p12 : p13 : p23]. (2.31)

where

p1 = x11, p2 = x12, p3 = x13, p12 = det

(
x11 x12

x21 x22

)
,

p13 = det

(
x11 x13

x21 x23

)
, p23 = det

(
x12 x13

x22 x23

)
.

(2.32)

Also by expressing the embedding of the matrix representation of X321 as
a product of the representation in

∏2
k=1Gr(k, 3), we have Gr(1, 3) and Gr(2, 3)
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hence, we have the equation ,

x11 x12 x13

x21 x22 x23

x31 x32 x33

 ↪→ ([
x11 x12 x13

]
,

[
x11 x12 x13

x21 x22 x23

])
. (2.33)

By appending the matrix Gr(1, 3) and Gr(2, 3), we obtain a 3 × 3 matrix with
determinant variables asx11 x12 x13

x11 x12 x13

x21 x22 x23

 = x11

∣∣∣∣∣x12 x13

x22 x23

∣∣∣∣∣− x12
∣∣∣∣∣x11 x13

x21 x23

∣∣∣∣∣+ x13

∣∣∣∣∣x11 x12

x21 x22

∣∣∣∣∣ = 0. (2.34)

which is equal to

x11(x12x23 − x13x22)− x12(x11x23 − x13x21) + x13(x11x22 − x12x21) = 0. (2.35)

Therefore, the equation defining the ideal of X321 is

0 = p1p23 − p2p13 + p3p12. (2.36)

For n = 4, the equation defining the ideal of the Schubert varieties embedded
in the Grassmannians and also embedded in the product of the Projective spaces
is computed as follows.

F`4(C) = X4321 ↪→
n−1∏
k=1

Gr(k, n) ↪→
n−1∏
k=1

P

n
k

−1
. (2.37)

F`4(C) = X4321 ↪→
4−1∏
k=1

Gr(k, 4) ↪→
4−1∏
k=1

P

4

k

−1
. (2.38)

F`4(C) = X4321 ↪→
3∏

k=1

Gr(k, 4) ↪→
3∏

k=1

P

4

k

−1
= P3 × P5 × P3. (2.39)

14



Taking all the minors of the matrix Schubert variety, we have,
x11 x12 x13 x14

x21 x22 x23 x24

x31 x32 x33 x34

x41 x42 x43 x44

→ [p1 : p2 : p3 : p4 : p12 : p13; p14 : p23

: p24 : p34 : p123 : p124 : p134 : p234]

. (2.40)

where

p1 = x11, p2 = x12, p3 = x13, p4 = x14, p12 = det

(
x11 x12

x21 x22

)
,

p13 = det

(
x11 x13

x21 x23

)
, p14 = det

(
x11 x14

x21 x24

)
, p23 = det

(
x12 x13

x22 x23

)
,

p24 = det

(
x12 x14

x22 x24

)
, p34 = det

(
x13 x14

x23 x24

)
, p123 = det

x11 x12 x13

x21 x22 x23

x31 x32 x33

 ,

p124 = det

x11 x12 x14

x21 x22 x24

x31 x32 x34

 , p234 = det

x12 x13 x14

x22 x23 x24

x32 x33 x34



.

(2.41)

Also by expressing the embedding of the matrix representation of X4321 as a
product of the representation in

∏3
k=1Gr(k, 4), we have Gr(1, 4), Gr(2, 4), Gr(3, 4),

hence we have the equation


x11 x12 x13 x14

x21 x22 x23 x24

x31 x32 x33 x34

x41 x42 x43 x44

 ↪→
[x11 x12 x13 x14

]
,

[
x11 x12 x13 x14

x21 x22 x23 x24

]x11 x12 x13 x14

x21 x22 x23 x24

x31 x32 x33 x34


 .

(2.42)
By appending the matrix Gr(1, 4) to Gr(3, 4) we obtain a 4× 4 matrix with deter-
minant variables as
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x11 x12 x13 x14

x11 x12 x13 x14

x21 x22 x23 x24

x31 x32 x33 x34

 = x11

∣∣∣∣∣∣∣
x12 x13 x14

x22 x23 x24

x32 x33 x34

∣∣∣∣∣∣∣− x12
∣∣∣∣∣∣∣
x11 x13 x14

x21 x23 x24

x31 x33 x34

∣∣∣∣∣∣∣+

x13

∣∣∣∣∣∣∣
x11 x12 x14

x21 x22 x24

x31 x32 x34

∣∣∣∣∣∣∣− x14
∣∣∣∣∣∣∣
x11 x12 x13

x21 x22 x23

x31 x32 x33

∣∣∣∣∣∣∣ = 0.

. (2.43)

p1p234 = x11[x12[x23x34 − x24x33]− x13[x22x34 − x24x32] + x14[x22x33 − x23x32]]

−p2P134 = x12[x11[x23x34 − x24x33]− x13[x21x34 − x24x31] + x14[x21x33 − x23x31]]

p3p124 = x13[x11[x22x34 − x24x32]− x12[x21x34 − x24x31] + x14[x21x32 − x22x31]]

−p4p123 = x14[x11[x22x33 − x23x32]− x12[x21x33 − x23x31] + x13[x21x32 − x22x31]].

.

(2.44)

which is equal to
p1p234 − p2p134 + p3p124 − p4p123 = 0. (2.45)

Next, append the matrix Gr(1, 4), Gr(1, 4) and Gr(2, 4) which gives the 4× 4

matrix in equation 2.43 and then we pick the 3× 3 minors


x11 x12 x13 x14

x11 x12 x13 x14

x11 x12 x13 x14

x21 x22 x23 x24

 ↪→
([
x11 x12 x13 x14

]
,
[
x11 x12 x13 x14

] [x11 x12 x13 x14

x21 x22 x23 x24

])
.

(2.46)
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picking the 3× 3 minors gives,


x11 x12 x13 x14

x11 x12 x13 x14

x11 x12 x13 x14

x21 x22 x23 x24

 =

p234 =

x12 x13 x14

x12 x13 x14

x22 x23 x24

 = p2p34 − p3p24 + p4p23 = 0

p134 =

x11 x13 x14

x11 x13 x14

x21 x23 x24

 = p1p24 − p3p14 + p4p13 = 0

p124 =

x11 x12 x14

x11 x12 x14

x21 x22 x24

 = p1p24 − p2p14 + p4p12 = 0

p123 =

x11 x12 x13

x11 x12 x13

x21 x22 x23

 = p1p23 − p2p13 + p3p12 = 0

. (2.47)

Next, we append the matrix Gr(2, 4) to Gr(2, 4) which gives a 4 × 4 matrix and
then pick the 2× 2 minors ,


x11 x12 x13 x14

x21 x22 x23 x24

x11 x12 x13 x14

x21 x22 x23 x24

 =

∣∣∣∣∣x11 x12

x21 x22

∣∣∣∣∣
∣∣∣∣∣x13 x14

x23 x24

∣∣∣∣∣−
∣∣∣∣∣x11 x13

x21 x23

∣∣∣∣∣
∣∣∣∣∣x12 x14

x22 x24

∣∣∣∣∣+
∣∣∣∣∣x11 x14

x21 x24

∣∣∣∣∣
∣∣∣∣∣x12 x13

x22 x23

∣∣∣∣∣ .
(2.48)

= p12p34 − p13p24 + p14p23 = 0. (2.49)

Next we append the matrix Gr(2, 4) to Gr(3, 4) which gives a 5× 4 matrix


x11 x12 x13 x14

x21 x22 x23 x24

x11 x12 x13 x14

x21 x22 x23 x24

x31 x32 x33 x34

 ↪→
[x11 x12 x13 x14

x21 x22 x23 x24

]x11 x12 x13 x14

x21 x22 x23 x24

x31 x32 x33 x34


 . (2.50)

An extra column is added to the matrix to make a square matrix such that the
determinants can be determined. The extra column is obtained from any of the
4×5 matrix and the process is repeated for all the columns of the matrix. Obtaining
4 copies of a 5× 5 matrix and then take the block determinant.
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∣∣∣∣∣∣∣∣∣∣∣∣

x11 x11 x12 x13 x14

x21 x21 x22 x23 x24

x11 x11 x12 x13 x14

x21 x21 x22 x23 x24

x31 x31 x32 x33 x34

∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣x11 x11

x21 x21

∣∣∣∣∣
∣∣∣∣∣∣∣
x12 x13 x14

x22 x23 x24

x32 x33 x34

∣∣∣∣∣∣∣+

∣∣∣∣∣x11 x12

x21 x22

∣∣∣∣∣
∣∣∣∣∣∣∣
x11 x13 x14

x21 x23 x24

x31 x33 x34

∣∣∣∣∣∣∣

−

∣∣∣∣∣x11 x13

x21 x23

∣∣∣∣∣
∣∣∣∣∣∣∣
x11 x12 x14

x21 x22 x24

x31 x32 x34

∣∣∣∣∣∣∣+

∣∣∣∣∣x11 x14

x21 x24

∣∣∣∣∣
∣∣∣∣∣∣∣
x11 x12 x13

x21 x22 x23

x31 x32 x33

∣∣∣∣∣∣∣ = 0.

.

(2.51)

= p12p134 − p13p124 + p14p123 = 0. (2.52)

∣∣∣∣∣∣∣∣∣∣∣∣

x11 x12 x12 x13 x14

x21 x22 x22 x23 x24

x11 x12 x12 x13 x14

x21 x22 x22 x23 x24

x31 x32 x32 x33 x34

∣∣∣∣∣∣∣∣∣∣∣∣
= −

∣∣∣∣∣x11 x12

x21 x22

∣∣∣∣∣
∣∣∣∣∣∣∣
x12 x13 x14

x22 x23 x24

x32 x33 x34

∣∣∣∣∣∣∣−
∣∣∣∣∣x12 x12

x22 x22

∣∣∣∣∣
∣∣∣∣∣∣∣
x11 x13 x14

x21 x23 x24

x31 x33 x34

∣∣∣∣∣∣∣

−

∣∣∣∣∣x12 x13

x22 x23

∣∣∣∣∣
∣∣∣∣∣∣∣
x11 x12 x14

x21 x22 x24

x31 x32 x34

∣∣∣∣∣∣∣−
∣∣∣∣∣x12 x14

x22 x24

∣∣∣∣∣
∣∣∣∣∣∣∣
x11 x12 x13

x21 x22 x23

x31 x32 x33

∣∣∣∣∣∣∣ = 0.

(2.53)

= p12p234 − p23p124 + p14p123 = 0. (2.54)

∣∣∣∣∣∣∣∣∣∣∣∣

x11 x12 x13 x13 x14

x21 x22 x23 x23 x24

x11 x12 x13 x13 x14

x21 x22 x23 x23 x24

x31 x32 x33 x33 x34

∣∣∣∣∣∣∣∣∣∣∣∣
= −

∣∣∣∣∣x11 x13

x21 x23

∣∣∣∣∣
∣∣∣∣∣∣∣
x12 x13 x14

x22 x23 x24

x32 x33 x34

∣∣∣∣∣∣∣−
∣∣∣∣∣x12 x13

x22 x23

∣∣∣∣∣
∣∣∣∣∣∣∣
x11 x13 x14

x21 x23 x24

x31 x33 x34

∣∣∣∣∣∣∣

−

∣∣∣∣∣x13 x13

x23 x23

∣∣∣∣∣
∣∣∣∣∣∣∣
x11 x12 x14

x21 x22 x24

x31 x32 x34

∣∣∣∣∣∣∣−
∣∣∣∣∣x13 x14

x23 x24

∣∣∣∣∣
∣∣∣∣∣∣∣
x11 x12 x13

x21 x22 x23

x31 x32 x33

∣∣∣∣∣∣∣ = 0.

.

(2.55)

18



= p13p234 − p23p134 + p34p123 = 0. (2.56)

∣∣∣∣∣∣∣∣∣∣∣∣

x11 x12 x13 x14 x14

x21 x22 x23 x24 x24

x11 x12 x13 x14 x14

x21 x22 x23 x24 x24

x31 x32 x33 x34 x34

∣∣∣∣∣∣∣∣∣∣∣∣
= −

∣∣∣∣∣x11 x14

x21 x24

∣∣∣∣∣
∣∣∣∣∣∣∣
x12 x13 x14

x22 x23 x24

x32 x33 x34

∣∣∣∣∣∣∣−
∣∣∣∣∣x12 x14

x22 x24

∣∣∣∣∣
∣∣∣∣∣∣∣
x11 x13 x14

x21 x23 x24

x31 x33 x34

∣∣∣∣∣∣∣

−

∣∣∣∣∣x12 x14

x22 x24

∣∣∣∣∣
∣∣∣∣∣∣∣
x11 x12 x14

x21 x22 x24

x31 x32 x34

∣∣∣∣∣∣∣−
∣∣∣∣∣x14 x14

x24 x24

∣∣∣∣∣
∣∣∣∣∣∣∣
x11 x12 x13

x21 x22 x23

x31 x32 x33

∣∣∣∣∣∣∣ = 0.

(2.57)

= p14p234 − p24p134 + p34p124 = 0. (2.58)

Therefore, the equations defining F`4(C) = X4321 for n = 4 is determined by
equating the sum of all the minors to zero.

p1p234 − p2p134 + p3p124 − p4p123 = 0

p2p34 − p3p24 + p4p23 = 0

p1p24 − p3p14 + p4p13 = 0

p1p24 − p2p14+p4p12 = 0

p1p23 − p2p13 + p3p12 = 0

p12p34 − p13p24 + p14p23 = 0

p12p134 − p13p124 + p14p123 = 0

−p12p234+p23p124 − p14p123 = 0

p13p234 − p23p134 + p34p123 = 0

p14p234 − p24p134 + p34p124 = 0.
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2.6 Bruhat Order

The Bruhat order is a partial order relation defined on the elements of Sn with
respect to the length function.

Remark 2.6.1. The Bruhat graph is the transitive closure of the partial order

relation defined on the elements of W with respect to the length function.

Definition 2.6.2. For any σ ∈ Sn, the Bruhat graph is the graph with vertex set

equal to {v ∈ Sn : v ≤ σ} = [id, σ] where there exist an edge between v and vtij if

v, vtij ≤ σ and t is the transposition.

Definition 2.6.3. Vertex

The vertex is said to be the point that two or more straight lines meets .

Definition 2.6.4. Edge

An edge is the line segment between faces.

Definition 2.6.5. Degree

The degree of a permutation v is the number of edges connected to v on the

Bruhat graph for σ and it is equal to the dimension of Tv(Xσ).

Theorem 2.6.6. [Lakshmibai & Sandhya (1990)]

Let (W,S) be an arbitrary Coxeter system. For v ≤ y ≤ σ

]{r ∈ R|v ≤ ry ≤ σ} ≥ l(σ)− l(v). (2.59)
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Figure 2.1: The Bruhat graph for S4.
.

Source: [ Abe & Billey (2016)]
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Figure 2.2: The Bruhat graph for S5

Source: [ Abe & Billey (2016)]
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2.7 Singular locus of Schubert Varieties

This session gives the definition of the smooth and singular Schubert varieties with
examples. We note that the singular locus of the Schubert varieties are closed sets
of points where the Schubert varieties are not smooth.

2.7.1 Smooth Schubert Varieties

Definition 2.7.1. The Schubert varieties Xσ = G/B are smooth manifold if each

point has a dimension of n(n−1)
2

and the dimension of the tangent space at each

point is n(n−1)
2

.

Corollary 2.7.2. [Abe & Billey (2016)]

Xσ is smooth iff Xσ is smooth at v = id.

Let G�B = Xσ0 = Cσ0
⋃
v<σ0

Cv. Cσ0 is an affine neighborhood of σ0.
For instance when n = 5, σ0 = 54321


0 0 0 0 1

0 0 0 1 0

0 0 1 0 0

0 1 0 0 0

1 0 0 0 0

 ∈

∗ ∗ ∗ ∗ 1

∗ ∗ ∗ 1 0

∗ ∗ 1 0 0

∗ 1 0 0 0

1 0 0 0 0

 = Cσ0 .

This neighborhood can be moved around to contain the identity by left multipli-
cation by the matrix σ0.

σ0Cσ0 = σ0Bσ0 =


0 0 0 0 1

0 0 0 1 0

0 0 1 0 0

0 1 0 0 0

1 0 0 0 0




∗ ∗ ∗ ∗ 1

∗ ∗ ∗ 1 0

∗ ∗ 1 0 0

∗ 1 0 0 0

1 0 0 0 0

 =


1 0 0 0 0

x21 1 0 0 0

x31 x32 1 0 0

x41 x42 x43 1 0

x51 x52 x53 x54 1

 .

The Matrix of σ0 ∈ Cσ0 .
Where the stars in the matrix on the right are replaced with affine coordinates.
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2.7.2 Singular Schubert Varieties

Definition 2.7.3. A point p ∈ Cv ⊂ Xσ is singular in Xσ iff every point in Cv is

singular in Xσ,

2.8 Pattern Avoidance

This section discusses the classical permutation patterns .

2.8.1 Permutation Patterns

Definition 2.8.1. Permutation

A permutation of length n is a one to one mapping from n- elements set to

itself.

Definition 2.8.2. Permutation pattern

A permutation pattern is a subpermutation of a longer permutation. An el-

ement σ ∈ Sn contains the pattern v ∈ Sk if whenever σ is expressed in one-line

notation, it contains a subword of length k whose entries are in the same relative

order as the entries of v, if σ does not contain the pattern v then σ avoids v.

2.8.2 Classical Permutation Patterns

A permutation pattern is classically defined if there exist an occurrence of a per-
mutation τ in σ as a subsequence in σ and of the same length as τ whose letters
are in the same relative order as those in τ .

2.8.3 Interval Pattern Avoidance

For m ≤ n, Let v ∈ Sm and σ ∈ Sn be two permutations such that v embeds in
σ then there exist integers 1 ≤ τ1 < τ2 < τ3 < · · · < τm ≤ n such that σ(τ1) <

σ(τ2) < σ(τ3) < · · · < σ(τm) are in the same relative order as v(1), v(2), · · · , v(m).
σ avoid v if no such embedding occurs.

2.8.4 The 3412 Pattern

If σ ∈ Sn and (i1, i2, i3, i4) be integers we have a 3412 pattern of σ if 1 ≤ i1 < i2 <

i3 < i4 ≤ n and σ(i3) < σ(i4) < σ(i1) < σ(i2). The set of all 3412 patterns of σ is
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given by P3412(σ). If σ contains 3412 pattern then P3412(σ) 6= ∅.

2.8.5 The 4231 pattern

If σ ∈ Sn and (i1, i2, i3, i4) be integers we have a 4231 pattern of σ if 1 ≤ i1 < i2 <

i3 < i4 ≤ n and σ(i4) < σ(i2) < σ(i3) < σ(i1). The set of all 4231 patterns of σ is
given by P4231(σ). If σ contains 4231 pattern then P4231(σ) 6= ∅.

2.9 Cohomology of the Flag Varieties

This session discusses the cohomology of the flag varieties and the computation of
the algebraic additive Z basis which are the monomials.

The classes of the closure of the Schubert cells forms additive basis for the cohomol-
ogy of F`n(C). The homology of the flag varieties does not have a ring structure
but since the flag varieties F`n(C) satisfies Poincare duality, this implies that there
exist an isomorphism from the homology to the cohomology of F`n(C) given by
the map ,

f : Hn−k(F`n(C);Z)→ Hk(F`n(C);Z). (2.60)

and defined by
f [Xσ] = [Xσ] ∈ Hk(F`n(C)). (2.61)

called the Schubert class.
The Poincaré map f enables one to identify each graded piece of the cohomol-

ogy ring Hk(F`n(C);Z) with the homology group Hn−k(F`n(C);Z). The Schubert
classes forms additive Z basis that generates the cohomology ring Hk(F`n(C);Z).
The basis for the cohomology ring are the geometric basis and the algebraic basis.

The degree of [Xσ] is 2 dim[Xσ] = 2l(σ) .

Definition 2.9.1. The kth− Betti number, bk = dim2k(F`n(C);Z), 0 ≤ k ≤

dimF`n(C).

That is the number of generators of each of the graded piece of the cohomology
ring F`n(C) gives bk.

The algebraic basis for the cohomology of the ring F`n(C) is described as
follows:

Definition 2.9.2. A Symmetric function of a polynomial ring Z[x1, x2, · · · , xn] in

x1, x2, · · · , xn variable over an integral domain Z is symmetric if it is invariant for

every permutation ei ∈ Sn.
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Proposition 2.9.3. [Fulton & Fulton (1997)] The cohomology ring H2l(σ)(F`n(C);Z)

is generated by the basic classes x1, · · · , xn subject to the relations ei(x1, · · · , xn) =

0 for 1 ≤ i ≤ n. The classes xi11 x
i2
2 · · ·ximm with exponents ij ≤ m − j form a Z

basis for H2l(σ)(F`n(C);Z).

Example 2.9.4. The H2l(σ)(F`n(C);Z) ∼= Z[x1, x2, · · · , xn]/I, for I = 〈ei(x1, · · · , xn)〉,

where 1 ≤ i ≤ n and ei is the ith elementary symmetric function For F`n(C) = V6,

H2l(σ)(F`4(C);Z) ∼= Z[x1, x2, x3, x4]/I = 〈e1, e2, e3, e4〉 since the cohomology ring is

a graded ring it implies that,

H2k(F`4(C);Z) =
n⊕
k=0

H2k(F`4(C);Z). (2.62)

Where 0 ≤ k ≤ 6.

• For k = 0, H2k(F`4(C);Z) = H2.0 = 1.

• For k = 1, H2k(F`4(C);Z) = H2.1 = 〈x1, x2, x3〉.

• For k = 2, H2k(F`4(C);Z) = H2.2 = 〈x21, x22, x1x3, x1x2, x2x3〉.

• For k = 3, H2k(F`4(C);Z) = H2.3 = 〈x31, x21x2, x22x1, x1x2x3, x21x3, x22x3〉.

• For k = 4, H2k(F`4(C);Z) = H2.4 = 〈x31x2, x31x3, x21x22, x21x2x3, x1x22x3〉.

• For k = 5, H2k(F`4(C);Z) = H2.5 = 〈x31x22, x31x2x3, x21x22x3〉.

• For k = 6, H2k(F`4(C);Z) = H2.6 = 〈x31x22x3〉 .

Therefore the flag varieties are generated by the basic classes with generators
x1, x2, x3, x4

Example 2.9.5. The H2l(σ)(F`n(C);Z) ∼= Z[x1, x2, · · · , xn]/I for I = 〈ei(x1, · · · , xn)〉

, where 1 ≤ i ≤ n and ei is the i-th elementary symmetric functions For F`n(C) =

V10, H2l(σ)(F`5(C);Z) ∼= Z[x1, x2, x3, x4, x5]/I = 〈e1, e2, e3, e4, e5〉 since the coho-

mology ring is a graded ring it implies that,

H2k(F`5(C);Z) =
n⊕
k=0

H2k(F`5(C);Z).

Where 0 ≤ k ≤ 10.
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• For k = 0, H2k(F`5(C);Z) = H2.0 = 1.

• For k = 1, H2k(F`5(C);Z) = H2.1 = 〈x1, x2, x3, x4〉.

• For k = 2, H2k(F`5(C);Z) = H2.2 = 〈x21, x22, x23, x1x2, x1x3, x1x4, x2x3, x2x4, x3x4〉.

• For k = 3, H2k(F`5(C);Z) = H2.3 = 〈x31, x32, x21x2, x21x3, x21x4, x1x2x3, x1x2x4, x22x3,

x22x4, x
2
2x1, x

2
3x2, x

2
3x4, x

2
3x1, x1x3x4, x2x3x4〉.

• For k = 4, H2k(F`5(C);Z) = H2.4 = 〈x41, x31x2, x31x3, x31x4, x21x22, x21x23, x21x2x3, x21x2x3,

x21x2x4, x
2
1x3x4, x1x2x3x4, x

3
2x1, x

3
2x3, x

3
2x4, x1x

2
2x3, x

2
2x3x4, x

2
2x

2
3, x

2
3x1x2,

x23x2x4, x
2
3x

2
1, x

2
2x1x4〉.

• For k = 5, H2k(F`5(C);Z) = H2.5 = 〈x41x2, x41x3, x41x4, x31x22, x31x23, x31x2x3, x31x2x4,

x31x3x4, x
2
1x

3
2, x1x

3
2x4, x

2
1x

2
2x3, x

2
1x

2
2x4, x

2
1x

2
3x4, x

2
2x

2
3x4, x1x

3
2x3, x1x

2
2x

2
3,

x1x
2
2x3x4, x1x2x

2
3x4, x

2
1x2x3x4, x

3
2x3x4, x

2
3x2x1x4, x

2
3x1x2x4〉.

• For k = 6, H2k(F`5(C);Z) = H2.6 = 〈x1x22x23x4, x21x2x23x4, x1x32x3x4, x21x22x3x4, x31x32,

x32x
2
3x4, x

3
1x

2
2x4, x

2
1x

3
2x4, x

4
1x3x4, x

2
1x

2
2x

2
3, x

3
1x

2
2x4, x1x

3
2x

2
3, x

4
1x2x4, x

4
1x

2
3, x

4
1x

2
2,

x31x2x
2
3, x

3
1x2x

2
3x4, x

2
1x

3
2x3, x

4
1x2x3, x

3
1x

2
2x3〉.

• For k = 7, H2k(F`5(C);Z) = H2.7 = 〈x21x22x23x4, x1x32x23x4, x31x2x23x4, x21x32x3x4, x41x32,

x41x2x3x4, x
3
1x

2
2x3x4, x

4
1x

2
2x4, x

3
1x

3
2x4, x

2
1x

3
2x

2
3, x

4
1x

2
2x4, x

3
1x

2
2x

2
3, x

4
1x2x

2
3, x

3
1x

3
2x3,

x41x
2
2x3, 〉.

• For k = 8, H2k(F`5(C);Z) = H2.8 = 〈x21x32x23x4, x31x22x23x4, x41x2x23x4, x31x32x3x4, x41x32x3,

x41x
2
2x3x4, x

4
1x

3
2x4, x

3
1x

3
2x

2
3, x

4
1x

2
2x2, 〉.

• For k = 9, H2k(F`5(C);Z) = H2.9 = 〈x31x32x23x4, x41x22x23x4, x41x32x3x4, x41x32x23, 〉.

• For k = 10, H2k(F`5(C);Z) = H2.10 = 〈x41x32x23x4, 〉.

Therefore the flag varieties are generated by the basic classes with generators
x1, x2, x3, x4, x5

Example 2.9.6. The H2l(σ)(F`n(C);Z) ∼= Z[x1, x2, · · · , xn]/I , for I = 〈ei(x1, · · · , xn)〉

where 1 ≤ i ≤ n and ei is the ith elementary symmetric function For F`n(C) = V15,
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H2l(σ)(F`6(C);Z) ∼= Z[x1, x2, x3, x4, x5, x6]/I = 〈e1, e2, e3, e4, e5, e6〉 since the coho-

mology ring is a graded ring it implies that ,

H2k(F`6(C);Z) =
n⊕
k=0

H2k(F`6(C);Z).

Where 0 ≤ k ≤ 15.

• For k = 0, H2k(F`6(C);Z) = H2.0 = 1.

• For k = 1, H2k(F`6(C);Z) = H2.1 = 〈x1, x2, x3, x4, x5〉.

• For k = 2, H2k(F`6(C);Z) = H2.2 = 〈x21, x22, x23, x24, x1x2, x1x3, x1x4, x1x5, x2x3,

x2x4, x2x5, x3x4, x3x5, x4x5〉.

• For k = 3, H2k(F`6(C);Z) = H2.3 = 〈x31, x32, x33, x21x2, x21x3, x21x4, x21x5, x1x2x3,

x1x2x4, x1x2x5, x
2
2x3, x

2
2x4, x

2
2x5, x

2
2x1, x

2
3x2, x

2
3x4, x

2
3x1, x

2
3x5, x

2
4x1, x

2
4x2, x

2
4x3,

x24x5, x1x3x4, x1x3x5, x2x3x5, x2x3x4, x2x4x5, x3x4x5〉/

• For k = 4, H2k(F`6(C);Z) = H2.4 = 〈x41, x42, x31x2, x31x3, x31x4, x21x22, x21x23, x31x5,

x32x5, x
3
3x1, x

3
3x2, x

3
3x4, x

3
3x5, x

2
1x

2
4, x

2
2x

2
4, x

2
3x

2
4, , x

2
1x2x3, x

2
4x2x3, x

2
1x2x4, x

2
1x3x4,

x1x
2
2x5, x

2
1x2x5, x

2
1x3x5, x

2
1x4x5, x

2
3x4x5, x

2
4x3x5, x

2
4x1x2, x1x2x3x4, x

3
2x1, x

3
2x3,

x32x4, x1x
2
2x3, x

2
2x3x4, x

2
2x

2
3, x

2
3x1x2, x

2
3x2x4, x

2
3x

2
1, x

2
2x1x4, x1x2x3x5, x1x2x4x5,

x1x3x4x5〉.

• For k = 5, H2k(F`6(C);Z) = H2.5 = 〈x51, x41x2, x41x3, x41x4, x41x5, x31x22, x31x23, x31x24,

x21x
3
2, x

2
1x

3
3, x

3
1x2x3, x

3
1x3x4, x

3
1x4x5, x

3
1x2x4, x

3
1x2x5, x

3
1x3x5, x

2
1x

2
2x3, x

2
1x

2
2x4, x

2
1x

2
2x5,

x22x
3
3, x

3
2x

2
3, x

2
1x

2
3x5, x

2
1x

2
3x4, x

2
1x2x

2
3, x

2
1x3x

2
4, x1x3x

2
4x5, x1x

2
2x4x5, x1x

2
3x4x5,

x1x2x3x4x5, x1x
3
2x3, x1x

2
2x

2
3, x

3
2x3x4, x

3
2x4x5, x

3
3x4x5, x

3
3x

2
4, x

3
2x

2
4, x

3
2x3x5, x1x

4
2,

x22x
2
3x4, x

2
3x

2
4x5, x

3
3x

2
4x5, x2x3x

2
4x5, x

2
2x

2
4x5, x

2
1x

2
4x5, x1x

3
2x3, x1x

3
2x4, x1x

3
2x5,

x1x
3
3x5, x1x2x

3
3, x1x

3
3x4, x1x2x

2
3x4, x2x

2
3x4x5〉.

• For k = 6, H2k(F`6(C);Z) = H2.6 = 〈x51x2, x51x3, x51x4, x51x5, x31x32, x41x22, x41x2x′3
x41x2x4, x

4
1x2x5, x

4
1x3x4, x

4
1x3x5, x

4
1x4x5, x

4
1x

2
3, x

4
1x

2
4, x

3
1x

2
2x3, x

3
1x

2
2x4, x

3
1x

2
2x5, x

3
1x2x

2
3,

x31x2x
2
4, x

3
1x2x4x5, x

3
1x2x3x5, x

3
1x2x3x4, x

3
1x

3
2, x

3
1x

2
2x4, x

3
1x

2
3x5, x

3
1x

2
4x5, x

3
1x3x

2
4,

x31x3x4x5, x
2
1x

4
2, x

2
1x

3
2x3, x

2
1x

3
2x4, x

2
1x

3
2x5, x

2
1x

2
2x

2
3, x

2
1x

2
2x

2
4, x

2
1x

2
2x3x4, x

2
1x

2
2x3x5,

x21x
2
2x4x5, x

2
1x2x

3
3, x

2
1x2x

2
3x4, x

2
1x2x

2
3x5, x

2
1x2x

2
4x5, x

2
1x2x3x4x5, x

2
1x

3
3x4, x

2
1x

3
3x5,
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x21x
2
3x

2
4, x

2
1x

2
3x4x5, x

2
1x3x

2
4x5, x1x

4
2x3, x1x

4
2x4, x1x

4
2x5, x1x

3
2x

2
3, x1x

3
2x

2
4, x1x

3
2x4x5,

x1x
3
2x3x4, x1x

3
2x3x5, x1x

2
2x

3
3, x1x

2
2x

2
3x4, x1x

2
2x

2
3x5, x1x

2
2x

2
4x5, x1x

2
2x3x4x5, x

4
2x

2
4,

x1x2x
3
3x4, x1x2x

2
3x

2
4, x1x2x

2
3x4x5, x1x2x3x

2
4x5, x1x

3
3x

2
4, x1x

3
3x4x5, x1x

2
3x

2
4x5, x

4
2x

2
3,

x42x3x5, x
3
2x

3
4, x

3
2x

2
3x4, x

3
2x

2
3x5, x

3
2x3x

2
4, x

3
2x

2
4x5, x

2
2x

3
3x4, x

2
2x

3
3x5, x

2
2x

2
3x

2
4, x

4
2x4x5,

x42x3x4, x
2
2x

2
3x4x5, x

2
2x3x

2
4x5, x2x

3
3x

2
4, x2x

2
3x

2
4x5, x

3
3x

2
4x5, x1x2x

3
3x5, 〉.

• For k = 7, H2k(F`6(C);Z) = H2.7 = 〈x51x22, x51x2x3, x51x2x4, x51x2x5, x51x23, x51x3x4,
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• For k = 8, H2k(F`6(C);Z) = H2.8 = 〈x51x32, x51x22x3, x51x22x4, x51x22x5, x51x2x23, x51x2x24,
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• For k = 9, H2k(F`6(C);Z) = H2.9 = 〈x51x42, x51x32x3, x51x32x4, x51x22x23, x51x22x3x4,
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• For k = 10, H2k(F`6(C);Z) = H2.10 = 〈x51x42x3, x51x42x4, x51x42x5, x51x32x23, x51x32x24,
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.

• For k = 11, H2k(F`6(C);Z) = H2.11 = 〈x51x42x23, x51x42x3x4, x51x32x23x4, x51x32x3x4x5,
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• For k = 12, H2k(F`6(C);Z) = H2.12 = 〈x51x42x33, x51x42x23x4, x51x42x3x4x5, x51x42x24x5,
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• For k = 13, H2k(F`6(C);Z) = H2.13 = 〈x51x42x33x4, x51x42x33x5, x51x42x3x24x5, x51x32x23x24x5,
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4
2x

2
3x4x5, x

5
1x

3
2x

3
3x4x5, x

5
1x

2
2x

3
3x

2
4x5, x

4
1x

3
2x

3
3x

2
4x5, x

4
1x

4
2x

2
3x

2
4x5, x

4
1x

4
2x

3
3x4x5,

x31x
4
2x

3
3x

2
4x5, x

4
1x

4
2x

3
3x

2
4, x

4
1x

4
2x

3
3x4x5, x

4
1x

4
2x

3
3x

2
4x5, 〉.

• For k = 14, H2k(F`6(C);Z) = H2.14 = 〈x51x42x33x24, x41x42x33x24x5, x51x32x33x24x5, x51x42x23x24x5,

x51x
4
2x

3
3x4x5〉.

• For k = 15, H2k(F`6(C);Z) = H2.15 = 〈x51x42x33x24x5〉.

Therefore the flag varieties are generated by the basic classes with generators
x1, x2, x3, x4, x5, x6

2.10 Schubert Polynomials

Schubert polynomials are representatives of cohomology classes in flag varieties. In
n variables they are indexed by permutations σ ∈ Sn. They also form a basis for
the covariant of Sn action on Z[x1, x2, . . . ], n <∞.

Definition 2.10.1. Let Sn be a group such that Sn = {s1, s2, . . . , sn−1} with the

following relations ,

• s21 = e∀, 1 ≤ i ≤ n− 1.

• sisj = sjsi if, | i− j |≥ 2.

• sisi+1si = si+1sisi+1, 1 ≤ i ≤ n− 1.

where si = (i, i + 1) is a simple transposition and e the identity element of

Sn.

Definition 2.10.2. Given a permutation σ = sa1sa2 · · · san where n = l(σ). then

∂a1∂a2 · · · ∂an are independent of the representation, hence we define the Schubert

Polynomial Ωσ for every permutation σ ∈ Sn for every f ∈ Rn by ,

Ωσ = ∂−1σ σ0x
n−1
1 xn−22 · · ·x1n−1 (2.63)
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.

Lemma 2.10.3. [Fulton & Fulton (1997)]

For σ0 = n, n− 1, · · · , 2, 1, the permutation of longest length in Sn is given by

Ωσ0 = xn−11 .xn−22 . · · · .x2n−2.xn−1. (2.64)

2.10.1 Properties of Schubert Polynomials

The Schubert polynomials has the following properties.

1. If σ0 is the permutation of longest length in Sn, then Ωσ0 = xn−11 xn−22 · · ·x1n−1.

2. ∂iΩσ = Ωσsi if σ(i) > σ(i+ 1) where si is the transposition (i, i+ 1) .

3. Ωid = 1.

4. if Sn is the transposition (n, n+ 1) then ΩSn = x1,+ · · ·+ xn.

5. Schubert polynomials have positive coefficient .

Lemma 2.10.4. [Fulton & Fulton (1997)]

1. For any i, ∂i(Ωσ) = Ωσ.si , if σ(i) > σ(i+ 1). and ∂i(Ωσ) = 0, otherwise.

2. Ωσ0 = xn−11 xn−22 · · ·x2n−2xn−1.

3. For each i, Ωsi = x1 + x2 + · · ·+ xi.

The Schubert polynomial for the symmetric group Sn is derived by using the for-
mula for the divided difference given by,

∂i(Ωσ) =
(p− sip)
xi − xi+1

. (2.65)

2.10.2 Examples of Schubert Polynomials

Example 2.10.5. Calculating the Schubert polynomials for Sn where n = 3.

For n = 3 the permutations will be S3 = 6 permutations .

σ = {123, 132, 213, 231, 312, 321}.

σ0 = 321 = x21x
1
2x

0
3 = x21x

1
2,
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which is the permutation with the longest length.

The permutation σ0 = 321 = x21x
1
2, using the formula for divided difference

∂i(Ωσ) =
(p− sip)
xi − xi+1

.

1. Ω(312) = ∂2(Ω(321)) =
x21x2−x21x3
x2−x3 =

x21(x2−x3)
x2−x3 = x21.

2. Ω(231) = ∂1(Ω(321) =
x21x2−x1x22
x1−x2 = x1x2(x1−x2)

x1−x2 = x1x2.

3. Ω(213) = ∂2∂1(Ω(321) =
x21x2−x1x22
x1−x2 = x1x2(x1−x2)

x1−x2 = x1x2

∂2(x1x2) = x1x2−x1x3
x2−x3 = x1(x2−x3)

x2−x3 = x1.

4. Ω(132) = ∂1∂2(Ω(321) =
x21x2−x21x3
x2−x3 =

x21(x2−x3)
x2−x3 = x21

∂1(x
2
1) =

x21−x22
x1−x2 = (x1+x2)(x1−x2)

x1−x2 = x1 + x2.

5. Ω(123) = ∂1∂2∂1(Ω(321) =
x21x2−x1x22
x1−x2 = x1x2(x1−x2)

x1−x2 = x1x2

∂2(x1x2) = x1x2−x1x3
x2−x3 = x1(x2−x3)

x2−x3 = x1.

∂1(x1) = x1−x2
x1−x2 = 1.

Example 2.10.6. Given the permutation w = (4132), the Schubert polynomial is

given by = x31x2 + x31x3.

2.11 The Code of a Permutation

For any σ in Sn and for each i ≥ 1, ci(σ) = card.(j : j > i, σ(j) < σ(i)) ∈ Nn

This is the number of points in the ith row of the diagram of σ. The code of the
permutation σ is the vector c(σ) = (c1(σ), · · · , cn(σ)) ∈ Nn.

33



Table 2.1: The Schubert Polynomials for the Permutations of S3

Permutations Transpositions Length Schubert Polynomial
123 nil 0 1
132 s2 1 x1 + x2
213 s1 1 x1
231 s1s2 2 x1x2
312 s2s1 2 x21
321 s1s2s1 3 x21x2

Source: [Fulton & Fulton (1997)]
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Table 2.2: The Schubert Polynomials for the Permutations of S4

S/n Permutatns Length tij Products Xσ polynomials
1 1234 0 nil 1
2 1324 1 s2 x1 + x2
3 1342 2 s2s3 x1x2 + x3x1 + x3x2
4 1243 1 s3 x2 + x3
5 1423 2 s3s2 x21 + x22 + x1x2
6 1432 3 s2s3s2 x21x2 + x1x

2
2 + x21x3 + x22x3 + x1x

2
3

7 2134 1 s1 x1
8 2314 2 s1s2 x1x2
9 2341 3 s1s2s3 x1x2x3
10 2143 2 s3s1 x21 + x1x2 + x1x3
11 2413 3 s3s1s2 x21x2 + x1x

2
2

12 2431 4 s1s2s3s2 x21x2x3 + x1x
2
2x3

13 3124 2 s2s1 x21
14 3214 3 s2s1s2 x21x2
15 3241 3 s1s2s3s1 x21x2x3
16 3412 4 s2s3s1s2 x21x

2
2

17 3421 5 s1s2s3s1s2 x21x
2
2x3

18 3142 3 s2s3s1 x21x2 + x21x3
19 4123 3 s3s2s1 x31
20 4132 4 s3s2s3s1 x31x2 + x31x3
21 4213 4 s3s1s2s1 x31x2
22 4312 5 s3s2s3s1s2 x31x

2
2

23 4231 5 s1s2s3s2s1 x31x2x3
24 4321 6 s1s2s3s1s2s1 x31x

2
2x3

Source: [Fulton & Fulton (1997)]
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Table 2.3: The length and codes of the permutations of S4

s/n Permutation length Code
1 1234 0 (0,0,0)
2 2134 1 (1,0,0)
3 1324 1 (0,1,0)
4 1243 1 (0,0,1)
5 2314 2 (1,1,0)
6 2143 2 (1,0,1)
7 1342 2 (0,1,1)
8 3124 2 (2,0,0)
9 1423 2 (0,2,0)
10 2341 3 (1,1,1)
11 3214 3 (2,1,0)
12 3142 3 (2,0,1)
13 1432 3 (0,2,1)
14 2413 3 (1,2,0)
15 4123 3 (3,0,0)
16 3412 4 (2,2,0)
17 4213 4 (3,1,0)
18 4132 4 (3,0,1)
19 3241 4 (2,1,1)
20 2431 4 (1,2,1)
21 4312 5 (3,2,0)
22 4231 5 (3,1,1)
23 3421 5 (2,2,1)
24 4321 6 (3,2,1)

Source: [Fulton & Fulton (1997)]
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2.12 Empirical Review

Schubert varieties are among the best studied classes of singular algebraic varieties.
In 1874, Schubert calculus was named after Hermann Schubert, who initiated the
study of the intersection theory on the Grassmannians in 1879 and Zeuthen con-
tinued this study in the 19th century under the heading of enumerative geometry.

Kazhdan & Lusztig (1979) defined a condition called rational smoothness
which is interpreted in terms of Kazhdan-Lusztig polynomials. Lakshmibai & Se-
shadri (1984) also determined smoothness and singularity by considering the set of
points for which the Schubert varieties are singular.

Many authors have worked on the general properties of singularities of Schu-
bert varieties, there are still many interesting unanswered questions about prop-
erties which not all Schubert varieties hold in common. The fundamental work of
Ramanathan (1985), showed that all Schubert varieties are Cohen-Macaulay and
Normal.

Deodhar (1985) worked on the local Poincaré duality and non singularity of
Schubert varieties. he also established that smoothness in type A is same as rational
smoothness.

Wolper (1989) presented a simple algorithm for deciding whether a Schubert
variety in G/P where G = SLn is singular. This led to a geometric characterisation
of the non-singular Schubert varieties as sequences of Grassmannian bundles over
Grassmannians.

Furthermore, Lakshmibai & Sandhya (1990), determined smoothness of the
singular Schubert varieties in flag manifold using the method of pattern avoidance.
Carrell (1994) showed that for σ ∈ Sn, the Xσ is smooth if the poincaré polynomial
is palindromic.

Brion (1999) worked on the generic singularities of certain Schubert varieties
and then Gasharov (2001) worked on the sufficiency of the Lakshmibai-Sandhya
singularity conditions for Schubert varieties.

Moreover, Billey & Postnikov (2005) presented a uniform approach to pattern
avoidance in general terms of root systems and also extended the Lakshmibai-
Sandhya criterion to the case of an arbitrary semi simple Lie group G. As a
consequences of their main theorem, two additional criteria for (rational) smooth-
ness in terms of root system embeddings and double parabolic factorisation were
derived .

Woo (2010) determined which Schubert varieties are Gorenstein and also in-
troduced a notion called Bruhat-restricted pattern. The interval pattern avoidance
is a further generalisation which has the advantage of a geometric interpretation.
The question of where non-Gorenstein Schubert varieties are Gorenstein was fur-
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ther pursued along with analogous questions for other local properties.
Billey & Postnikov (2005) published that the affine type A rationally smooth

Schubert varieties are characteriesd using the 3412, 4231 permutation pattern avoid-
ance.

A new combinatorial notion was formulated by Woo & Yong (2008), used for
characterising the singularity of Schubert varieties of flag manifolds and their local
invariants. a uniform language was also provided to study semi continuously stable
invariants of singularities . Also a number of authors have been able to answer the
two most important questions about singularities of any given Schubert varietiy
and the questions are :

• which Schubert varieties (Xσ) are singular ?

• where are the Schubert varieties (Xσ) singular ?

These questions were answered by a geometric characterisation by Ryan (1987).
Beside, Oh et al. (2008) worked on the fact that Pσ(q) = Rσ(q) iff the Schubert va-
riety Xσ is smooth with reference to Carrell (1994) which states that the Schubert
variety Xσ is smooth iff the Poincaré polynomial Pσ(q) is Palindromic, that is if
Pσ(q) = ql(σ)Pσ(q−1). if Xσ is not smooth then the polynomial Pσ(q) is not Palin-
dromic but since the polynomial Rσ(q) is always Palindromic then Pσ(q) 6= Rσ(q)

in this situation.
Furthermore Ulfarsson (2011) proved new connections between permutation

patterns and singularities of Schubert varieties (Xσ) in the complete flag varieties
F`n(C), giving a new characterisation of factorial and Gorenstein varieties in terms
of which bivincular patterns the permutation σ avoids.

Billey & Crites (2012) studied the case when σ is the affine weyl group of
type A or the affine permutations and developed the notion of pattern avoidance
for affine permutations. They also worked on the characterisation of the rational
smooth Schubert varieties corresponding to affine permutations in terms of patterns
4231 and 3412 and the twisted spiral permutations

Recently, Abe & Billey (2016) presented analoques of Lakshmibai-Sandhya’s
theorem for determining if a given Schubert variety is smooth or not for all classical
types Bn, Cn, and Dn. However, these constructions, including the definition of
patterns depend on a particular way to represent elements in classical weyl groups
as signed permutations. They also surveyed the many results and generalisation in
the characterisation of Schubert varieties and showed the benefits of using pattern
avoidance characterisation in terms of linear time algorithm.

Kim & Park (2018) Characterise standard embedding of smooth Schubert va-
rieties in rational homogeneous manifolds of Picard number 1, by means of varieties
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of minimal rational tangents. They mainly considered non homogeneous smooth
Schubert varieties in Symplectic Grassmannians . Gillespie (2019) provided an
overview of many of the established combinatorial and algebraic tools of Schu-
bert calculus. It is intended as a guide for readers with a combinatorial bent to
understand the geometric and topological aspects of Schubert calculus.

More Recently, Cibotaru (2020) gave a complete list of smooth and rationally
smooth normalised Schubert varieties in the twisted affine grassmannians associ-
ated with a tamely ramified group and a special vertex of its Brubat-Tits building.
Besson & Hong (2022) introduced R-operators that are linked to positive roots
which satisfies Braid relations.

Also, Gatto & Salehyan (2021) extended the Schubert derivatives to the infi-
nite exterior power of a free Z− module of infinite rank. Huh (2022) showed that
the intersection cohomology module of a matroid obeys poincaré duality . They
also obtained proves for the nonnegativity of the Kazhdan-Lusztig polynomials for
all matroids.

For any σ ∈ Sn , Gaetz & Gao (2023) gave an exact equation for the least
positive power in the kazhdan-Lusztig polynomial. The best possible upper bound
on h(σ) in simple laced types.

2.13 Theoretical Framework

This research work is based on some past results and theorems that has been
proved by various authors in the literatures of singularities and smoothness of
Schubert varieties. The following are some of these results:

Proposition 2.13.1. [Carrell (1994)]

The following are equivalent:

• Xσ is Smooth;

• Xσ is smooth at id;

• |tij ≤ σ| = l(σ);

• σ avoids 3412 and 4231;

• The Kazhdan-Lusztig Polynomial Pid,σ(q) = 1;

• Pv,σ(q) = 1∀v ≤ σ;

• The Bruhat graph for σ is regular;

39



• For σ, Pσ(t) =
∑

v≤σ t
l(v) is symmetrical;

• For σ, Pv(t) =
∏k

i=1(1 + t+ t2 + · · ·+ tei) factors nicely.

Theorem 2.13.2. [Lakshmibai & Seshadri (1984)]

For v ≤ σ ∈ Sn, the tangent space of Xσ at v is

Tv(Xσ) ∼= Span{Ev(j), v(i) : i < j, vtij ≤ σ} and

dimTv(Xσ) = ]{(i < j) : vtij ≤ σ}.

Theorem 2.13.3. [Carrell (1994)]

For any permutation σ ∈ Sn, the Schubert variety Xσ is smooth iff the Poincaré

polynomial is Symmetrical .
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Chapter 3

METHODOLOGY

3.1 Preamble

Schubert varieties are algebraic varieties studied in various types, where the type
defines the underlying group. The smoothness and singularity of Schubert varieties
in type A, has been characterised by different authors making use of different
methods of characterisation such as ,

1. Tangent spaces method.

2. Permutation Pattern Avoidance method.

3. Poincaré Polynomial method.

4. The Essential set method.

In this chapter we adopt the Palindromic Poincaré polynomial and the essen-
tial set methods of characterising the smooth and singular Schubert varieties.

3.2 The Palindromic Poincaré Polynomial Method

The Poincaré polynomials are used to determine smoothness of Schubert varieties.
This was first used by Carrell (1994) to determine smoothness and singularity of
Schubert varieties by showing that the Poincaré polynomial is Palindromic.
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3.2.1 Poincaré Polynomial

Definition 3.2.1. [Deodhar (1985)] For a complex algebraic variety X, its Poincaré

polynomial is given by

Px(t) =
∑
i≥0

dimC(H i(X))ti. (3.1)

Where H i(X) is the singular homology of X.

Definition 3.2.2. The Poincaré polynomial of a Schubert variety (Xσ) is said to be

the rank generating function for the interval [id, σ], where the rank is the number

of inversions Pσ(t) =
∑

v≤σ t
l(v) and the sum is over all elements v ≤ σ in the

Bruhat-Chevalley order on W.

Definition 3.2.3. A Poincaré polynomial p(t) = v0+v1t+ · · ·+vrtr is Palindromic

if defined with respect to the length function and via the Bruhat order, v ≤ σ ⇔

l(v) ≤ l(σ) as p(t) = trp(t−1).

Theorem 3.2.4. [Carrell (1994)]

For any permutation σ ∈ Sn the Schubert variety Xσ is smooth if and only if

the Poincaré polynomial is Palindromic.

Example 3.2.5. For the Schubert variety X4321 which is also a flag, Carrell (1994)

showed that for any permutation σ ∈ Sn where n = 4 we have the Bruhat order.
Length Permutations

6 (4321)

5 (4312), (4231), (3421)

4 (4132), (4213), (3412), (2431), (3241)

3 (1432), (4123), (2413), (3142), (3214), (2341)

2 (1423), (1342), (2143), (3124), (2314)

1 (1243), (1324), (2134)

0 (1234)

Hence, the Poincaré polynomial of the Schubert variety (X4321) = F`4(C) for

n = 4 with respect to the variable t is

Pσ(F`4(C), t) = t6 + 3t5 + 5t4 + 6t3 + 5t2 + 3t+ 1. (3.2)

(1 3 5 6 5 3 1) .
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Hence, F`4(C) is smooth.

Example 3.2.6. For the Schubert variety X3412 with permutation σ = 3412 ∈ Sn
where n = 4 we have the Bruhat order.

Length Permutations

4 (3412)

3 (3142), (3214), (2341), (4123)

2 (1342), (3124), (2314), (1423), (2143)

1 (1324), (1243), (2134))

0 (1234)

Pσ((X3412), t) = t4 + 4t3 + 5t2 + 3t1 + t0 = t4 + 4t3 + 5t2 + 3t+ 1. (3.3)

(1 4 5 3 1).

Hence (X3412) is singular since the Poincaré polynomial is not palindromic.

3.3 The Essential set method

The essential set method uses the Jacobian criterion for determining smoothness
and singularity of algebraic varieties. In this section we consider the diagram of
a permutation, the essential sets of the permutation, the rank of the permutation
and then the ideal defining the varieties using the essential sets.

3.3.1 Diagram of σ

The diagram of σ denoted by D′(σ) is given by

D′(σ) = {(i, j) ∈ [n]2 3 σ(i) > j, σ−1(j) < i}. (3.4)

Remark 3.3.1. The number of elements in the D′
(σ) is given by the codim(Xσ)

which is equal to

 n

2

− l(σ).

Example 3.3.2. The diagram of σ = 35142 is D′(σ) = {(2, 3), (4, 1), (4, 3), (5, 1)}.

Example 3.3.3. The diagram of σ = 51324 is D′(σ) = {(3, 1), (4, 1), (5, 1), (5, 2),

(5, 3)}.
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3.3.2 Essential Set

Definition 3.3.4. The essential set of σ is denoted by

Ess′(σ) = {(i, j) ∈ D′(σ) 3 (i− 1, j), (i, j + 1), (i− 1, j + 1) /∈ D′(σ)}. (3.5)

Remark 3.3.5. This set comprises of the north east corners of connected compo-

nents in D′(σ).

Example 3.3.6. The essential set of σ = 35142 is Ess′(σ) = {(2, 3), (4, 1), (4, 3)}.

Example 3.3.7. The essential set of σ = 51324 is Ess′(σ) = {(3, 1), (5, 2), (5, 3)}.

Remark 3.3.8. • The Ess′(σ) is all on one row if and only if σ has at most

one ascent.

• All entries in Ess
′
(σ) are zero (0) entries in the canonical matrix form for

Cσ.

3.3.3 Rank Matrix Of The Permutation σ

To determine the rank matrix of σ, we recall the definition of the Schubert cell.

Definition 3.3.9. The Schubert cell Cσ is given by

Cσ = {V0 ∈ F`n(C) | dim(Wp

⋂
Vq) = rσ(p, q), 1 ≤ p, q ≥ n}. (3.6)

{V0 ∈ F`n(C) | dim(Wp

⋂
Vq) = ]{i ≤ p : σ(i) ≤ q}for1 ≤ p, q ≤ n}. (3.7)

Example 3.3.10. The rank matrix of the permutation σ = 2413 is

Rσ =


1 2 3 4

1 2 2 3

0 1 1 2

0 1 1 1


The rank matrix of σ = 2413.

Example 3.3.11. The rank matrix of the permutation σ = 35142 is
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Rσ =



1 2 3 4 5

1 1 2 3 4

1 1 2 2 3

0 0 1 1 2

0 0 1 1 1


The rank matrix of σ = 35142.

Example 3.3.12. The rank matrix of the permutation σ = 51324 is

Rσ =



1 2 3 4 5

1 2 3 3 4

1 1 2 2 3

1 1 1 1 2

0 0 0 0 1


The rank matrix of σ = 51324.

3.3.4 Generating the Ideal of σ

Definition 3.3.13. [Billey & Postnikov (2005)]

The Matrix Schubert variety is given by

{X ∈Matn×n(C) : rk(X(i,j)) ≤ rkσ(i,j) ∀i, j}

=


X ∈Matn×n(C)

∣∣∣∣∣∣∣∣∣∣∣∣

rkσ(i,j) + 1 minors vanish on
xi1 · · · xij
...

...

xn1 · · · xnj

∀i, j


.

(3.8)

Definition 3.3.14. The ideal of σ determined by all [rkσ[i,j] + 1] minors of


xi1 · · · xij
...

xn1 · · · xnj

 ∀i, j. (3.9)
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Proposition 3.3.15. Fulton & Fulton (1997) I = ideal determined by the [rkσ[i,j]+

1] minors of X[i, j],∀(i, j) ∈ Ess′(σ) Then Iσ = I,∀σ ∈ Sn.

Example 3.3.16. The ideal of σ = 35142 is

Iσ = {〈x41, x51,

∣∣∣∣∣∣x41 x42

x51 x52

∣∣∣∣∣∣ ,
∣∣∣∣∣∣x41 x43

x51 x53

∣∣∣∣∣∣ ,
∣∣∣∣∣∣x42 x43

x52 x53

∣∣∣∣∣∣ ,
∣∣∣∣∣∣∣∣∣
x21 x22 x23

x31 x32 x33

x41 x42 x43

∣∣∣∣∣∣∣∣∣ ,∣∣∣∣∣∣∣∣∣
x21 x22 x23

x41 x42 x43

x51 x52 x53

∣∣∣∣∣∣∣∣∣ ,
∣∣∣∣∣∣∣∣∣
x21 x22 x23

x31 x32 x33

x51 x52 x53

∣∣∣∣∣∣∣∣∣ ,
∣∣∣∣∣∣∣∣∣
x31 x32 x33

x41 x42 x43

x51 x52 x53

∣∣∣∣∣∣∣∣∣〉}.
(3.10)

= {〈x41, x51, (x42x53 − x52x43)〉}. (3.11)

Calculating the ideal for the permutation σ = 35142 . An element in Cσ = BσB

has the form,

∗ ∗ 1 0 0

∗ ∗ 0 ∗ 1

1 0 0 0 0

0 ∗ 0 1 0

0 1 0 0 0


.

Given M = xij ∈ BσB and the essential points x23, x43, set to be equal to one

(1).

Then the following equations are satisfied x41 = x51 = 0,

∣∣∣∣∣∣x41 x42

x51 x52

∣∣∣∣∣∣ =

∣∣∣∣∣∣x41 x43

x51 x53

∣∣∣∣∣∣ =

0 , and

∣∣∣∣∣∣∣∣∣
x21 x22 x23

x31 x32 x33

x41 x42 x43

∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣
x21 x22 x23

x41 x42 x43

x51 x52 x53

∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣
x21 x22 x23

x31 x32 x33

x51 x52 x53

∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣
x31 x32 x33

x41 x42 x43

x51 x52 x53

∣∣∣∣∣∣∣∣∣ = 0.

Hence, Iσ = I35142 = {〈x41, x51, (x42x53 − x52x43)〉}.

Example 3.3.17. The ideal of the permutation σ = 2413 is

Iσ =

〈
x41, x42,

∣∣∣∣∣∣x21 x22

x31 x32

∣∣∣∣∣∣ ,
∣∣∣∣∣∣x21 x22

x41 x42

∣∣∣∣∣∣ ,
∣∣∣∣∣∣x31 x32

x41 x42

∣∣∣∣∣∣
〉

=

〈
x41, x42,

∣∣∣∣∣∣x21 x22

x31 x32

∣∣∣∣∣∣
〉
.

(3.12)
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= 〈x41, x42, x21x32 − x22x31〉 . (3.13)

Example 3.3.18. The ideal of σ = 3412 is

Iσ =

〈
x41,

∣∣∣∣∣∣∣∣∣
x21 x22 x23

x31 x32 x33

x41 x42 x43

∣∣∣∣∣∣∣∣∣
〉
. (3.14)

In order to solve for smoothness of the Schubert varieties, the Jacobian crite-
rion is used on the equation defining the ideal of the Schubert varieties.

Theorem 3.3.19. [Jacobian criterion]

Let Y ∈ An given by I(Y ) = {f1, · · · , fr} and fi = x1, · · · , xn. Then,

J(x1, · · · , xn) =
(
∂fi
∂xj

)
. For p = (p1, · · · , pn) ∈ An then,

1. rkJ(p1, · · · , pn) ≤ codimAnY = n− dimY

2. p is smooth ∈ Y iff rkJ(p1, · · · , pn) = codimAnY = n− dimY .

Example 3.3.20. Given that σ = 35142, Is Xσ smooth ?

Xσ is smooth everywhere iff it is smooth at v = id

The diagram of σ = 35142 is D′(σ) = {(2, 3), (4, 1), (4, 3), (5, 1)}.

The essential set of σ = 35142 is Ess′(σ) = {(2, 3), (4, 1), (4, 3)}.

The ideal is generated for all σ ∈ Sn by rank(i, j)+1 minors of X(i, j),∀(i, j) ∈

Ess′(σ).

The ideal for σ = 35142 is given by I(35142) = {〈x41, x51, (x42x53 − x52x43)〉}.

J(x1, · · · , xn) =

(
∂fi
∂xj

)
=


∂f1
∂x41

∂f1
∂x42

∂f1
∂x43

∂f1
∂x51

∂f1
∂x52

∂f1
∂x53

∂f2
∂x41

∂f2
∂x42

∂f2
∂x43

∂f2
∂x51

∂f2
∂x52

∂f1
∂x53

∂f3
∂x41

∂f3
∂x42

∂f3
∂x43

∂f3
∂x51

∂f3
∂x52

∂f1
∂x53

 .

where x1 = x41, x2 = x42, x3 = x43, x4 = x51, x5 = x52, x6 = x53 and f1 =

x41, f2 = x51, f3 = x42x53 − x52x43.

J(x41, x42, x43, x51, x52, x53) =


1 0 0 0 0 0

0 0 0 1 0 0

0 x53 −x52 0 x43 x42

 ,
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J(I) is obtained by setting all the variables xij equal to 0

=


1 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 0 0

 .

Rank of J(I) = 2 (number of non zero rows), codimXσ =

5

2

− 6 = 4 .

X35142 is singular, since the rank of the Jacobian matrix of the equation defin-

ing the ideal is not equal to the co-dimension of the variety .

Example 3.3.21. Given that σ = 51324, Is Xσ smooth?

Xσ is smooth everywhere iff it is smooth at v = id.

The diagram of σ = 51324 is D′(σ) = {(3, 1), (4, 1), (5, 1), (5, 2), (5, 3)}.

The essential set of σ = 51324 is Ess′(σ) = {(3, 1), (5, 2), (5, 3)}.

The ideal is generated for all σ ∈ Sn by rank(i, j) + 1 minors of X(i, j) for

all (i, j) ∈ Ess′(σ).

The ideal for σ = 51324 is given by I(51324) = {〈x31, x41, x51, x52, x53〉}.

J(x1, · · · , xn) =

(
∂fi
∂xj

)
=



∂f1
∂x31

∂f1
∂x41

∂f1
∂x51

∂f1
∂x52

∂f1
∂x53

∂f2
∂x31

∂f2
∂x41

∂f2
∂x51

∂f2
∂x52

∂f2
∂x53

∂f3
∂x31

∂f3
∂x41

∂f3
∂x51

∂f3
∂x52

∂f3
∂x53

∂f4
∂x31

∂f4
∂x41

∂f4
∂x51

∂f4
∂x52

∂f4
∂x53

∂f5
∂x31

∂f5
∂x41

∂f5
∂x51

∂f5
∂x52

∂f5
∂x53


.

where x1 = x31, x2 = x41, x3 = x51, x4 = x52, x5 = x53, and f1 = x31, f2 =

x41, f3 = x51, f4 = x52, f5 = x53.

J(x31, x41, x51, x52, x53) =



1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


.

Rank of J(I) = 5 (number of non zero rows), codimXσ =

5

2

− 5 = 5 .
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X51324 is smooth, since the rank of the Jacobian matrix of the equation defining

the ideal is equal to the co-dimension of the variety.

49



Chapter 4

RESULTS AND DISCUSSION

This section comprises of the results obtained using the exponents of the monomials
of the Schubert varieties and the equation defining the ideals of the Schubert variety
via the Plucker coordinates to show smoothness. it also compares the equations
derived through the plücker embedding map with that of the essential sets method.

4.1 Smoothness and Singularity of Schubert Vari-

eties using the exponent of the monomials of

the Schubert varieties

In this session smoothness of Schubert varieties using the exponents of the mono-
mials through the Poincaré palindromic polynomial method is determined. The
proof of the results and examples to support them are given.

4.1.1 Kazhdan-Lusztig Polynomials

Definition 4.1.1. [Billey & Postnikov (2005)]

The Kazhdan-Lusztig polynomial is a polynomial in one variable that has the

following properties:

1. Pv,σ(t) = 1 if v ≤ σ.

2. The number of edges connected to Pv,σ(t) is less or equal to 1
2
(l(σ)− l(v)−1).

3. Pσ,σ(t) = 1.

4. Pv,σ(t) 6= 0↔ v ≤ σ.
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Corollary 4.1.2. [Lakshmibai & Sandhya (1990)]

Let σ ∈ W . The i-th component (of the cohomology ring) Hi(Xσ) = 0 for i

odd. Furthermore ∑
i

dimHi(Xσ)ti =
∑
v≤σ

tl(v)Pv,σ(t).

Theorem 4.1.3. [Lakshmibai & Sandhya (1990)]

The following are equivalent for any v ≤ σ in W

1. Xσ is rationally smooth at ev.

2. Px,σ(t) = 1 for all v ≤ x ≤ σ.

Theorem 4.1.4. [Billey & Postnikov (2005)]

Let IH(σ) be the intersection cohomology sheaf of Xσ with respect to middle

perversity, then

1. Pv,σ(t) =
∑
dim(IH2i(Xσ)v)qi which implies that the coefficients of Pv,σ(t)

are nonnegative.

2. Pv,σ(t)tl(v) =
∑

v≤σ dim(IH2i(Xσ))qi Which implies palindromic symmetric.

3. Pv,σ(t) = 1 for every v ≤ σ if and only if Xσ is rationally smooth. and this

will be taken to be the definition for rational smoothness.

Theorem 4.1.5. Let σ ∈ Zn+ be the monomial exponent of the Xσ, then the fol-

lowing are equivalent:

1. The Schubert variety Xσ is rationally smooth at every point.(since smoothness

in type A is equivalent to rational smoothness);

2. The Poincaré polynomial Pσ(t) is Palindromic;

3. The Bruhat graph Γ(id, σ) is regular, that is every vertex has the same number

of edges, l(σ).;

To prove Theorem 4.1.5, we must show that 1⇒ 2, 2⇒ 3 and 3⇒ 1.

Proof. For the case 1⇒ 2

Suppose Xσ is rationally smooth at every point then we must show that the

Poincaré polynomial is symmetric.
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As X(σ) is rationally smooth,

Pv,σ(t) = 1,∀, v ≤ σ. (4.1)

From the definition of the Poincaré polynomial of the Schubert variety we

have

Pσ(t) =
∑
i

dimH2i(X(σ))ti =
∑
v≤σ

tl(v)Pv,σ(t). (4.2)

which is a Palindromic polynomial.

Hence since Pv,σ(t) = 1,∀, v ≤ σ

Pσ(t) =
∑
v≤σ

tl(v)Pv,σ(t) =
∑
v≤σ

tl(v). (4.3)

is Palindromic.

Next we show that 2⇒ 3

Assume Pσ(t) is symmetric then we must show that every vertex has the same

number of edges l(σ).

Since Pσ(t), is Palindromic, then

tl(σ)Pσ(t−1) = Pσ(t). (4.4)

But

Pσ(t) =
∑
v≤σ

tl(v). (4.5)

tl(σ)
∑
v≤σ

t−l(v) =
∑
v≤σ

tl(v). (4.6)

∑
v≤σ

(tl(σ)−l(v) − tl(v)) = 0. (4.7)

Taking the derivative of (4.7), we have

∑
v≤σ

[(l(σ)− l(v))tl(σ)−l(v)−1 − l(v)tl(v)−1] = 0. (4.8)
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When t = 1 (4.8) becomes

∑
v≤σ

[(l(σ)− l(v))− l(v)] = 0 (4.9)

i.e. ∑
v≤σ

(l(σ)− l(v))−
∑
v≤σ

l(v) = 0. (4.10)

Thus ∑
v≤σ

(l(σ)− l(v)) =
∑
v≤σ

l(v). (4.11)

Let v ∈ W, by definition, l(v) = ]{r ∈ R, |rv < v}

i.e.

∑
v≤σ

l(v) =
∑
v≤σ

]{r ∈ R, |rv < v} =
∑
v≤σ

]{r ∈ R, |v < rv ≤ σ} (4.12)

From Deodhar’s Inequality, we have that

∀, x ≤ y ≤ σ,

]{r ∈ R, |x ≤ ry ≤ σ} ≥ l(σ)− l(x). (4.13)

In particular, if x = y,

]{r ∈ R, |y ≤ ry ≤ σ} ≥ l(σ)− l(y),∀y ≤ σ. (4.14)

Thus (4.12) becomes

∑
v≤σ

l(v) =
∑
v≤σ

]{r ∈ R, |v < rv ≤ σ} ≥
∑
v≤σ

l(σ)− l(v) =
∑
v≤σ

l(v). (4.15)

Hence , ∑
v≤σ

l(σ)− l(v) =
∑
v≤σ

]{r ∈ R, |v < rv ≤ σ}. (4.16)

i.e.

l(σ)− l(v) = ]{r ∈ R, |v < rv ≤ σ}, ∀, v ≤ σ. (4.17)

i.e.

l(σ) = l(v) + ]{r ∈ R, |v < rv ≤ σ},∀, v ≤ σ. (4.18)
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= number of edges of vertex v ≤ σ.

Next, we show 3⇒ 1

Suppose that every vertex of Γ(id, σ) has the same number l(σ) of edges then,

we must show that Xσ is rationally smooth at every point. That is Pv,σ(t) = 1

For v ≤ σ

We show by induction on l(σ)− l(v) = k

Let k = 0,

=⇒ l(σ) = l(v)

=⇒ σ = v .

Therefore by definition

Pσ,σ(t) = 1

Let k = 1,

=⇒ l(σ)− l(v) = 1

=⇒ v < σ .

Hence by definition.

Pv,σ has at most degree 1
2
(l(σ)− l(v)− 1) = 0 and Pv,σ(0) = 1

Thus Pv,σ(t) = constant = 1,∀, t.

Let k = 2

=⇒ l(σ)− l(v) = 2

=⇒ v < σ .

Hence by definition.

Pv,σ(t) has at most degree 1
2
(l(σ)− l(v)− 1) = 1

2
and Pv,σ(0) = 1

Thus Pv,σ(t) = constant = 1,∀, t.

For k = 3 =⇒ l(σ)− l(v) = 3

=⇒ v < σ .
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Hence by definition.

Pv,σ has at most degree 1
2
(l(σ)− l(v)− 1) = 1 and Pv,σ(0) = 1

Thus Pv,σ(t) = 1 + αt for some α ∈ Z+.

Hence by (4.4)

d

dt
[tl(σ)−l(v)Pv,σ(t−2)]t=1 =

∑
r∈R|v<rv≤σ

Prv,σ(1) (4.19)

i.e.
d

dt
[t3(1 +

α

t2
)]t=1 =

∑
r∈R|v<rv≤σ

Prv,σ(1) (4.20)

i.e.
d

dt
[t3 + αt]t=1 =

∑
r∈R|v<rv≤σ

Prv,σ(1) (4.21)

picking the left hand side of (4.21), we have

d

dt
[t3 + αt]t=1 = [3t2 + α]t=1 = 3 + α. (4.22)

For r ∈ R and v < rv ≤ σ. Then

l(v) < l(rv)

l(v) ≤ l(rv)− 1

−l(rv) ≤ −l(v)− 1

l(σ)− l(rv) ≤ l(σ)− l(v)− 1 = 3− 1 = 2

Hence Prv,σ(t) = 1,∀t by the definition

Therefore Prv,σ(t) = 1, for r ∈ R such that v < rv ≤ σ and so

∑
r∈R|v<rv≤σ

Prv,σ(1) =
∑

r∈R|v<rv≤σ

(1) = ]{r ∈ R|v < rv ≤ σ} (4.23)

= l(σ)− l(v) = 3. (4.24)

Equation (4.21) now becomes (from the LHS of (4.22) and from the RHS of (4.24)

)

3 + α = 3, (4.25)
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α = 0 (4.26)

Hence

Pv,σ(t) = 1 + αt = 1,∀t. (4.27)

Assume that Pv,σ = 1 is true for all l(σ)− l(v) ≤ k − 1.

For some k ≥ 1 we want to show that Pv,σ = 1.

For l(σ)− l(v) = k.

Let

f(t) = tl(σ)−l(v)[Pv,σ(t−2)− 1] (4.28)

l(σ)− l(v) = k ≥ 1, so v < σ and thus , Pv,σ(t) has degree 1
2
(l(σ)− l(v)− 1), and

Pv,σ(0) = 1

Pv,σ(t) =

1
2
(l(σ)−l(v)−1)∑

i=0

αit
i (4.29)

with α0 = Pv,σ(0) = 1

So

f(t) = tl(σ)−l(v)[

1
2
(l(σ)−l(v)−1)∑

i=0

αit
−2i − 1] (4.30)

i.e.

tl(σ)−l(v)

1
2
(l(σ)−l(v)−1)∑

i=1

αit
−2i =

1
2
(k−1)∑
i=1

αit
k−2i, (4.31)

where k = l(σ)− l(v) observe that

1 ≤ i ≤ 1
2
(k − 1) ⇒ 2 ≤ 2i ≤ (k − 1) ⇒ 1 − k ≤ −2i ≤ −2 ⇒ 1 ≤ k − 2i ≤

(k − 2)

Hence, f(t) is a polynomial with no constant term.

By Deodhar inequality, and Differentiating with respect to t at t = 1 we have

d

dt
[tl(σ)−l(v)Pv,σ(t−2)]t=1 =

∑
r∈R|v<rv≤σ

Prv,σ(1). (4.32)

i.e.
d

dt
[f(t) + tl(σ)−l(v)]t=1 =

∑
r∈R|v<rv≤σ

Prv,σ(1). (4.33)
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f
′
(1) + l(σ)− l(v) =

∑
r∈R|v<rv≤σ

Prv,σ(1). (4.34)

f
′
(1) =

∑
r∈R|v<rv≤σ

Prv,σ(1)− [l(σ)− l(v)]. (4.35)

Let r ∈ R be such that v < rv ≤ σ.

v < rv ⇒ l(v) < l(rv)

⇒ l(v) ≤ l(rv)− 1

⇒ −l(rv) ≤ −l(v)− 1

⇒ l(σ)− l(rv) ≤ l(σ)− l(v)− 1 = k − 1

So from the induction hypothesis Prv,σ(1) = 1.

Thus

f
′
(1) =

∑
r∈R|v<rv≤σ

1− [l(σ)− l(v)]. (4.36)

i.e.

]{r ∈ R|v < rv ≤ σ} − [l(σ)− l(v)] = 0. (4.37)

From (4.28) and (4.29) we have

f(t) =

1
2
(k−1)∑
i=1

αit
k−2i. (4.38)

where

Pv,σ(t) =

1
2
(k−1)∑
i=0

αit
i. (4.39)

f
′
(t) =

1
2
(k−1)∑
i=1

αi(k − 2i)tk−2i−1. (4.40)

f
′
(1) =

1
2
(k−1)∑
i=1

αi(k − 2i) = 0. (4.41)

The coefficients αi of the Kazhdan-Lusztig polynomials are non negatives and

k − 2i ≥ 1,∀i hence αi = 0,∀i

So, f(t) = 0, ∀t

tl(σ)−l(v)[Pv,σ(t−2)− 1] = 0, ∀t. (4.42)
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Pv,σ(t−2)− 1 = 0,∀t. (4.43)

i.e.

Pv,σ(t−2) = 1, ∀t. (4.44)

i.e.

Pv,σ(t) = 1,∀t. (4.45)

which shows that the Schubert variety Xσ is rationally smooth at every vertex

implies smoothness in type A.

Example 4.1.6. For the Xσ where σ is the exponent of the monomials of the Xσ

for the permutation of S4, we have the Bruhat order.
Length Exponents

6 (3, 2, 1)

5 (3, 2, 0), (3, 1, 1), (2, 2, 1)

4 (3, 0, 1), (3, 1, 0), (2, 2, 0), (1, 2, 1), (2, 1, 1)

3 (0, 2, 1), (3, 0, 0), (1, 2, 0), (2, 0, 1), (2, 1, 0), (1, 1, 1)

2 (0, 2, 0), (0, 1, 1), (1, 0, 1), (2, 0, 0), (1, 1, 0)

1 (0, 0, 1), (0, 1, 0), (1, 0, 0)

0 (0, 0, 0)

Pσ(F`4(C), t) = t6 + 3t5 + 5t4 + 6t3 + 5t2 + 3t+ 1. (4.46)

(1 3 5 6 5 3 1).

Hence, F`4(C) is smooth.

Example 4.1.7. For the Xσ where σ is the exponent of the monomials of the Xσ

for the permutation of S4 we have the Bruhat order.
Length Exponents

4 (2, 2, 0)

3 (2, 0, 1), (2, 1, 0), (1, 1, 1), (3, 0, 0)

2 (0, 1, 1), (2, 0, 0), (1, 1, 0), (0, 2, 0), (1, 0, 1)

1 (0, 1, 0), (0, 0, 1), (1, 0, 0))

0 (0, 0, 0)

Pσ((X2,2,0), t) = t4 + 4t3 + 5t2 + 3t1 + t0 = t4 + 4t3 + 5t2 + 3t+ 1. (4.47)
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(1 4 5 3 1).

Hence (X2,2,0) is singular since the Poincaré polynomial is not palindromic.

Remark 4.1.8. The following are the observations when showing smoothness and

singularity of Schubert variety using the exponent of its monomials ;.

• Smoothness is understood in terms of the exponents of the monomial of the

Schubert variety.

• The sum of each exponent of a monomial term gives the length of the Schubert

variety.

• The addition of the exponent term on same row gives the coefficient of the

Poincaré polynomial.

• The sum of the exponent terms are reducing as we move down the bruhat

order.

Remark 4.1.9. The result of Carrell (1994) shows that for σ ∈ Sn, the Schubert

variety Xσ is smooth iff it is palindromic and thls led to the result of Oh et al.

(2008). They showed that Pσ(t) = Rσ(t) iff the Schubert variety is smooth. The

Schubert variety is smooth iff the poincaré polynomial is palindromic otherwise it is

singular. but since the rank generating function Rσ(t) is always palindromic then

Pσ(t) 6= Rσ(t) in all cases. This lead us to show that given any σ ∈ Z+
n to be

the exponent of the monomials of the Schubert variety Xσ then the following are

equivalent;

1. The Schubert variety Xσ is rationally smooth at every point.(since smoothness

in type A is equivalent to rational smoothness);

2. The Poincaré polynomial Pσ(t) is Palindromic; for σ ∈ Z+
n

3. The Bruhat graph Γ(id, σ) is regular, that is every vertex has the same number

of edges, l(σ).;

Characterising smoothness and singularity of the Schubert varieties by using the

exponents of the monomials of the Schubert varieties has reviewed the results of

Carrell (1994) and have extended the underlying group from Sn to Z+
n .
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4.2 Smoothness of the Equations Defining the Ideal

of Schubert Varieties using the Jacobian Crite-

rion

In this session smoothness is determined using the equation defining the ideal of
the Schubert varieties.

4.2.1 Polynomial Rings and Tangent Spaces

This subsection comprises of some basic definitions that leads to the proof of the
results.

Definition 4.2.1. Let K be a ring, A polynomial f(x) with coefficient in K is an

infinite formal sum

∞∑
i=0

aix
i = a0 + a1x+ a2x

2 + · · ·+ anx
n + · · · . (4.48)

where ai ∈ K and ai 6= 0 for all but a finite number of values of i.

Definition 4.2.2. An affine n−space over K is given by An = {(a1, a2, · · · , an) 3

ai ∈ K}.

Definition 4.2.3. Let X ⊂ An, a polynomial function f is a map f : X → K

defined by x 7→ f(x) for some f ∈ K[x1, · · · , xn].

Remark 4.2.4. 1. ∀f, g ∈ K[x1, · · · , xn], f(x) = g(x) iff f = g ∈ I(X) .

2. A(X) = K[x1, · · · , xn]/I(X), coordinate ring of X .

3. A(X) ≈ ring of all polynomial functions on X.

Definition 4.2.5. Let X ⊂ An be an affine variety the ideal of X denoted by

I(X) = {f ∈ K[x1, · · · , xn] : f(p) = 0,∀, p ∈ X} This is the set of all polynomials

vanishing on X.

Definition 4.2.6. Let p be any point in the Schubert variety i.es p = (a1, a2, · · · , an) ∈

Xv then ∀f ∈ K[x1, x2, · · · , xn],
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f(x1, x2, · · · , xn) = f(p)+
∑
i

∂f

∂xi
(p)(xi−ai)+ terms at least quadratic in(xi−ai).

Definition 4.2.7. The linear parts of the polynomials

Lp = span

{∑
i

∂f

∂xi
(p)(xi − ai)

}
⊂ K[x1, x2, · · · , xn]. (4.49)

Definition 4.2.8. The tangent space of the Schubert variety at the point p is

Tp(Xv) =

〈
{(x1, x2, · · · , xn) :

∑
i

∂f

∂xi
(p)(xi − ai) = 0∀f ∈ I(Xv)}

〉
. (4.50)

Definition 4.2.9. The dimension of the linear parts of the polynomials is exactly

the rank of the jacobian matrix of the ideals of the Schubert variety. i.es dimLp =

rankJ(I(Xv).

Definition 4.2.10. The dimension of the flag which is equal to the dimension

of the Schubert variety at identity (when the dimension is complete) is given by

N = dimLp + dimTp(Xv).

Definition 4.2.11. The Schubert varieties are smooth at the point p if dimTp(Xv) =

dimXv.

Theorem 4.2.12. Let Sn be the symmetric group of n letters, with σ, v ∈ Sn

such that σ is of maximal length. Then the Schubert variety Xv is smooth iff

R(J(I(Xv))) = N − l(v) .

Proof. Xv is smooth at p⇔ dimTp(Xv) = dimXv. (by definition)

But the dimension of the flag is N = dimLp + dimTp(Xv)

⇔ dimLp = N − dimTp(Xv)

⇔ dimLp = N − dim(Xv)

⇔ rankJ(I(Xv)) = N − dimXv = l(σ)− l(v)

Hence the Schubert variety Xv is smooth whenever rankJ(I(Xv)) = N −

dimXv = l(σ)− l(v) where (N = l(σ) and dimXv = l(v)).
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Example 4.2.13. To Show that the equation defining the ideal of X321 is smooth we

must show that the rank of the Jacobian matrix R(J(I)) = l(σ)−l(v) = codim(Xσ).

The equation defining the ideal of the Schubert variety X321 is given by

x11(x12x23 − x13x22)− x12(x11x23 − x13x21) + x13(x11x22 − x12x21) = 0. (4.51)

= p1p23 − p2p13 + p3p12 (4.52)

Where p1 = x11, p2 = x12, p3 = x13, p12 = (x11x22 − x12x21), p13 = (x11x23 −

x13x21), p23 = (x12x23 − x13x22) and

f1 = p1p23 = x11(x12x23 − x13x22).

f2 = p2p13 = x12(x11x23 − x13x21).

f3 = p3p12 = x13(x11x22 − x12x21).

Therefore, we have

J(x1, · · · , xn) =

(
∂fi
∂xj

)
=


∂f1
∂x11

∂f1
∂x12

∂f1
∂x13

∂f1
∂x21

∂f1
∂x22

∂f1
∂x23

∂f2
∂x11

∂f2
∂x12

∂f2
∂x13

∂f2
∂x21

∂f2
∂x22

∂f2
∂x23

∂f3
∂x11

∂f3
∂x12

∂f3
∂x13

∂f3
∂x21

∂f3
∂x22

∂f3
∂x23

 .
Differentiating with respect to {x11, x12, x13, x21, x22, x23} we have the matrix

J(I) =

x12x23 − x13x22 x11x23 −x22x11 0 −x13x11 x11x12

x12x23 x11x23 − x13x21 −x21x11 −x13x12 0 x12x11

x13x22 −x21x13 x11x22 − x12x21 x12x13 x13x22 0

 .

Setting the variables to be equal to zero the Jacobian matrix of I denoted

J(I) =

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

 .

Rank of J(I) = 0 = number of non zero rows,

codimXσ =

(
3

2

)
− l(σ) = 3− 3 = 0

Hence, the Schubert variety X321 is smooth at identity.
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Example 4.2.14. To Show that the equation defining the ideal of X3412 is singu-

lar we must show that the rank of the jacobian matrix R(J(I)) 6= l(σ) − l(v) =

codim(Xσ). The equation defining the ideal of the Schubert variety X3412 is given

by {p4, p234} = (x41, x21(x43x32 − x42)− (x43x31 − x41) therefore we have

J(x21, x31, x32, x41, x42, x43) =

(
∂fi
∂xij

)
=

 ∂f1
∂x21

∂f1
∂x31

∂f1
∂x32

∂f1
∂x41

∂f1
∂x42

∂f1
∂x43

∂f2
∂x21

∂f2
∂x31

∂f2
∂x32

∂f2
∂x41

∂f2
∂x42

∂f2
∂x43

 .
Where f1 = x41, f2 = x21(x43x32 − x42)− (x43x31 − x41)

Differentiating the fi with respect to (x21, x31, x32, x41, x42, x43) we have the

matrix,

J(I) =

 0 0 0 1 0 0

x43x32 − x42 −x43 x21x43 1 −x21 x21x32 − x31

 .

Setting the variables to be equal to zero, we obtain

Rank of J(I) = 1, codimXσ =

4

2

− l(σ) = 6− 4 = 2,

Hence, the Schubert variety X3412 is singular since R(J(I)) 6= l(σ)− l(v). .

Example 4.2.15. Show that the equation defining the ideal of X2413 is not singular

we must show that; R(J(I)) 6= l(σ)− l(v) = codim(Xσ).

The equation defining the ideal of the Schubert variety X2413 is given by

{p3, p4, p34, p134, p234},

where

p3 = x31.

p4 = x41.

p34 = x42x31 − x41x32.

p134 = x43x32 − x42.

p234 = x21(x43x32 − x42)− (x43x31 − x41).

Therefore, the equation defining X2413 is

{x31, x41, x42x31 − x41x32, x43x32 − x42, x21(x43x32 − x42)− (x43x31 − x41)}.

Therefore, we have,
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J(x21, x31, x32, x41, x42, x43) =

(
∂fi
∂xij

)
=



∂f1
∂x21

∂f1
∂x31

∂f1
∂x32

∂f1
∂x41

∂f1
∂x42

∂f1
∂x43

∂f2
∂x21

∂f2
∂x31

∂f2
∂x32

∂f2
∂x41

∂f2
∂x42

∂f2
∂x43

∂f3
∂x21

∂f3
∂x31

∂f3
∂x32

∂f3
∂x41

∂f3
∂x42

∂f3
∂x43

∂f4
∂x21

∂f4
∂x31

∂f4
∂x32

∂f4
∂x41

∂f4
∂x42

∂f4
∂x43

∂f5
∂x21

∂f5
∂x31

∂f5
∂x32

∂f5
∂x41

∂f5
∂x42

∂f5
∂x43


.

Where f1 = x31, f2 = x41, f3 = x42x31 − x41x32, f4 = x43x32 − x42, f5 =

x21(x43x32 − x42)− (x43x31 − x41).

Differentiating the fi with respect to (x21, x31, x32, x41, x42, x43).

we have the matrix,

J(I) =



0 1 0 0 0 0

0 0 0 1 0 0

0 x42 −x41 −x32 x31 0

0 0 x43 0 −1 x32

x43x32 − x42 −x43 x21x43 1 −x21 x32x21 − x31


.

Setting all the variables to zero, we have,

Rank of J(I) = 3, codimXσ =

4

2

− l(σ) = 6− 3 = 3.

Hence the Schubert variety X2413 is not singular since R(J(I)) = l(σ)− l(v) .

Remark 4.2.16. • The equation of the ideal is contained in the kernel of the

variety. Hence it is equal to zero.

• Differentiating with respect to each of terms of the equation of the ideal gives

us a zero matrix.

Remark 4.2.17. The results of Lakshmibai & Seshadri (1984) showed that Xσ is

smooth at v ∈ Sn if and only if dimTv(Xσ) := ]{(i < j) : vtij ≤ σ} = l(σ) which

is also equivalent to ]{(i < j) : v < vtij ≤ σ} = l(σ) − l(v), that gave rise to the

theorem of Lakshmibai & Seshadri (1984) that for v ≤ σ ∈ Sn, the tangent space

of Xσ at v is given by dimTv(Xσ) = ]{(i < j) : vtij ≤ σ}. Hence we show using the
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equations defining the ideals of the Schubert varieties that, if given any σ, v ∈ Sn
where Sn is the symmetric group of n letters, such that σ is of maximal length the

the Schubert variety Xv is smooth iff R(J(I(Xv))) = N − l(v) .

This has established a connection between smoothness in differentials equa-

tions and smoothness in algebraic geomertry. Hence the concept of smoothness is

successfully generalised.

Remark 4.2.18. • The equation defining the ideal of the Schubert variety Xσ

through the essential set is derived by determining the rank matrix of the Schu-

bert variety while the equation of the ideal through the plücker embedding is

derived by determining the Schubert varieties embedded in the Grassmannians

which are in turn embedded in the product of higher dimensional projective

spaces by means of the Plücker embeddings map.

• The equation defining the ideal of the Schubert variety Xσ obtained through

the essential set is not in the kernel of the varieties while that of the Plücker

embedding is in the kernel of the varieties and is equal to zero.

• Differentiating with respect to each of the terms in the equation of the ideal

obtained through the essential set do not give a zero matrix whereas that of

the Plücker embedding gives us a zero matrix.

• Using the essential set and the Plücker embedding map the Schubert varieties

are always smooth at the origin.
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Chapter 5

SUMMARY AND CONCLUSION

5.1 Summary of Findings

The smoothness of type A Schubert varieties are reviewed, extended and generalised
to other groups with supporting examples. Chapter Two gives the basic definitions
and general review of the study.

In chapter three the methods, adopted in showing for smoothness of type A
Schubert varieties are presented.

In section 4.1 smoothness is defined in terms of the exponents of the monomials
of the Schubert varieties using the method of Palindromic Poincaré polynomials.
This has sucessfully extended the underlying group Sn to Z+

n .
In section 4.2 smoothness is established using the equations defining the ideals

of the Schubert varieties and this shows that smoothness in algebra geometry is
same as that in differential equations. Some examples that supports the results are
included.

The relationship and differences between the essential set method and the
Plücker coodinate method are given.

5.2 Conclusion

This research work has successfully shown smoothness of type A Schubert varieties
using the exponents of the monomials of the Schubert varieties. The thesis has
reviewed the result of Carrell (1994) and successfully extends the underlying group
from Sn to Z+

n .
Smoothness using the equations defining the ideals of the Schubert varieties is

established and this shows that smoothness in the theory of differential equations
is same as in algebraic geometry
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5.3 Limitations

The limitations of this work are mainly in the area of concrete applications of the
results to concrete problems.

5.4 Contributions to Knowledge

The following contributions are achieved;

1. This study has successfully reviewed the results of Carrell (1994) on smooth-
ness and singularities of Schubert varieties.

2. Smoothness using Sn as the underlying group have been extended to Z+
n .

3. smoothness using the exponents of the monomials of the Schubert varieties
by means of the Palindromic Poincaré polynomial is established.

4. This thesis investigate smoothness of Schubert varieties in terms of the equa-
tions defining the ideal of the Schubert varieties.

5. A connection between smoothness in differential equations and smoothness
in algebraic geometry is established .

5.5 Areas of Further Research

Further research that will be of interest includes :

• Unification of the many conditions of Schubert varieties to obtain a condition
that brings them all together.

• Establishing that for σ is smooth, then rσ(t) can be factorise out nicely, hence
rσ(t) is Palindromic.

• Verifying that for σ singular, then rσ(t) can not be factorise out nicely, hence
rσ(t) is not Palindromic.

• Establing smoothness of type A Schubert varieties using the exponents of the
monomials of the varieties through pattern avoidance method.
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