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ABSTRACT 

Breast cancer (BC) remains a disease with high morbidity and mortality. In Nigeria, 

BC represents about 23% of all cancer cases. Currently available chemotherapeutic 

interventions are associated with significant adverse effects, hence the need for safer 

options. C. portoricensis (CP) has been applied to manage breast diseases in 

ethnomedicine. However, there is paucity of scientific basis to justify this claim. In this 

study, an investigation of the effects of CP on N-nitroso-N-methylurea (MNU) and 

Benzo(a)pyrene (BP)-induced mammary and reproductive organ toxicity in Wistar rats 

was conducted. 

A root bark sample of CP was taken from Ikire, Osun State and authenticated at Forest 

Hebarium Ibadan (FHI:111949). The methanol extract of CP (MCP) was obtained 

from the powdered root. The MCP was partitioned to obtain n-hexane, chloroform, 

ethylacetate and butanol fractions. The chloroform fraction of CP (CCP) was subjected 

to biochemical assay using MCF-7 cells. Sixy-four female Wistar rats (30-40g) were 

divided into eight groups (n=8): Vehincle, MNU, [MNU+MCP (100 mg/kg)], 

[MNU+MCP (200 mg/kg)], [MNU+MCP (300 mg/kg)], MCP (300 mg/kg), 

[MNU+Vincasar (0.5 mg/kg)] and Vincasar only. In another study, fifty-six female 

rats were grouped into seven (n=8): Vehincle, [MNU+BP], [MNU+BP+CCP (50 

mg/kg)], [MNU+BP+CCP (100 mg/kg)], CCP (100 mg/kg), [MNU+BP+ Vincasar] 

and Vincasar only. The MNU (50 mg/kg) and BP (50 mg/kg) were administered 

intraperitoneally at age 7, 10 and 13 weeks. The MCP and CCP were administered 

orally thrice weekly. Rats were sacrificed; blood and tissues (mammary and uterine) 

were obtained for analyses. Lactate dehydrogenase (LDH), Superoxide Dismutase 

(SOD), Catalase, Glutathione-S-Transferase (GST), Glutathione Peroxidase (GPx), 

malondialdehyde, Nitric Oxide (NO) and Myeloperoxidase were determined by vis-

spectrophotometry. Cyclooxygenase-2, inducible Nitric Oxide Synthase (iNOS), B-cell 

lymphoma-2 (Bcl-2), p53, Interleukins-1β and 6 (IL-1β, IL-6), Estrogen and 

Progesterone receptors (ER+, PR+) and Epidermal Growth Factor Receptor-2 (EGFR-

2) were determined by immunohistochemistry. Micro-section of tissues were subjected 

to Hematoxylin & Eosin and examined under the light microscope. Data were analysed 

using ANOVA at α0.05. 
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The CCP decreased levels of IL-1β (34%), LDH (24%), MPO (74%), malondialdehyde 

(55%) and increased the activities of SOD (48%) and catalase (49%) in MCF-7 cells. 

The MNU decreased activities of mammary SOD (22%), uterine CAT (24%) and, GST 

(25%) relative to Vehincle. The MCP (100 mg/kg) when compared with MNU 

significantly elevated mammary SOD (18%) and uterine GST (20%). Treatment with 

CCP (100 mg/kg) when compared with MNU+BP significantly increased the 

mammary catalase (24.42±4.86 vs 16.1p6±2.90), GPx (171.48±13.97 vs 93.68±5.06), 

SOD (25.16±4.34 vs 16.09±2.90) and uterine catalase (29.52±4.83 vs 15.04±2.41) and 

SOD (48.56±4.70 vs 21.42±0.35), respectively. Additionally, CCP (100 mg/kg) 

significantly decreased mammary and uterine MPO (73%, 57%), NO (21%, 26%) and 

malondialdehyde (10%, 31%) when compared with [MNU+BP]-treated rats. The CCP 

(100 mg/kg) decreased ER+, PR+, EGFR-2, cyclooxygenase-2, iNOS, IL-6, IL-1β, Bcl-

2  and increased p53 expression in the mammary tissues of [MNU+BP+CCP]-treated 

rats. Histology of mammary tissues showed atypical epithelia, high nucleocytoplasm 

and ductal carcinoma in MNU+BP rats, which were reversed in rats given CCP (100 

mg/kg). 

 

C. portoricensis demonstrated chemopreventive effects via induction of apoptosis and 

reduction of inflammatory cytokines. 

  

Keywords:    C. portoricensis, N-nitroso-N-methylurea, Benzo(a)pyrene, Mammary 

gland 

Word count: 498 
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CHAPTER ONE 

INTRODUCTION 

1.1 BACKGROUND TO THE STUDY 

Breast cancer (BC) has always been the major leading clinical and societal challenge 

affecting women globally (Desantis et al., 2014). Several reports have documented BC 

as the next prominent contributor of cancer related deaths in the world. New BC cases 

are estimated to be 11.6% globally according to Globacon 2018 (Jemal et al., 2010). 

Further estimation reported that 30% of all newly diagnosed women cancers in 2020 

were BC (Shehata et al., 2012; Esther et al., 2016). BC is more than a single illness, 

with substantial heterogeneity at both the molecular and clinical level. (Etti et al., 2017; 

Khalki et al., 2020). Understanding the heterogeneity of BC is critical to the 

advancement of targeted cancer control and care. (Biau et al., 2016; Saraiva et al., 

2020). The clinical course determines the heterogeneity of BC, prognosis as well as the 

molecular classification into distinct subtypes of Luminal, Basal-like, and HER-2 

enriched (Bagheri et al., 2018; Bowers et al., 2019).  

 

Routine biological markers such as estrogen (ER), progesterone (PR), and human 

epidermal growth factor-2 (HER2) receptors classified BC into different molecular 

subtypes (Hamed et al., 2018).  As indicated by ductal carcinoma in situ (DCIS) and 

different tumor progression routes for each tumor type, these subsets of biolgical routine 

biomarkers are maintained throughout tribal groupings ( Utage et al., 2018; Jang et al., 

2019). The direct aetiology of BC is yet to be uncovered though hormones, lifestyle, 

genetics, birth history, age, diet, menstrual history and environmental factors have been 

reported by researchers to upsurge the chance of developing of BC (Kittaneh and 

Montero, 2013). However, it is not clear how to define the causes of developing cancer. 

Surgery, chemotherapy, radiotherapy, and hormone therapy are some of the best 

available treatment options for managing BC (Webb and Kukard, 2020). Resistance to 



2 
 

these available treatment is a major limitation to cancer treatment hence the search for 

better options with no or little side effect is on going.  

 

Human exposure to environmental toxicants has been on the rise thereby inducing their 

effects on reproductive functions (Bhardwaj, 2015; Patel et al., 2015). Countless studies 

have suggested a decline in female reproduction over the decades (Huo et al., 2015; 

Elvis-offiah et al., 2016; Ziv-Gal and Flaws, 2016). These declines may be attributed to 

cultural changes such as increased use of birth control in women, delay in child 

bearinng, although, mother, father or fetus exposures to environmental toxicants may 

also contribute to these changes (Zama and Uzumcu, 2010; Schwab et al., 2014).  It is 

therefore crucial to periodically examine the known or expected effects of 

environmental factors such as carcinogens on the reproductive capacity of the 

experimental animals as well as humans (De Coster and Van Larebeke, 2012; Gaskins 

and Mínguez-Alarcón, 2018; Ma et al., 2019). Examples of these environmental 

toxicants include but not limited to aflatoxin, cadmium, arsenic, MNU and BP (Rudel et 

al., 2011; Uri, 2014; Gray et al., 2017).  

 

The MNU is a high degree distinct breast gland carcinogen as well as complete potent 

and direct akylating agent which does not require metabolic activation (Oishi et al., 

2000; Thordason et al., 2001). It has been proven and widely accepted as a human 

mutagen and toxic. This is founded on sufficient proof of carcinogenecity through the 

use of experimental animals (Etten et al., 2005). Also, benzo[a]pyrene (BP) has been 

suggested to be capable of initiating and promoting carcinogenesis (Taylor et al., 

2006).  The biotransformation of BP requires a metabolic activation by cytochrome 

P450 (CYP 1A1 and CYP 1B1) into a more reactive compound BP-7,8-dihydrodiol-9-

10-epoxide which come in contact with DNA to form DNA adduct (IARC, 2020). 

 

Alternative medicines is recently gaining tremendous interest and becoming popular in 

treating cancer and infertility worldwide ( Ou-yang et al., 2019; Kurubanjerdjit, 2020). 

One of the natural products that is gaining attention lately is C. portoricensis (CP). CP is 

a multifaceted herb with mutiple therapeutic benefits. It has white scented and globose 

flower that looks like small snow ball (Ogbole et al., 2018). It is also known as powder 

puff. Over 200 species of CP have been identified, with the majority of them located in 
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Asia, Africa, and America's tropical and subtropical climates. It is called 'Tude' in 

Yoruba, 'Ule' in Igbo, and 'Oga' in Hausa in Nigeria. (Oyebode et al., 2019).  

 

CP stands out as the most popular traditionally employed remedy in south western part 

of Nigeria for treating breast engorgement and other related diseases (Onyeama et al., 

2012; Ogbole et al., 2017). Parts of the plant used and treatment methods varies from 

one locality to another. For example, the root decoction used in one locality may be 

different from the stem and leaf decoction used in another locality, thus, effectiveness of 

all the plant parts have been proven (Onyeama et al., 2012; Oyebode et al., 2019). CP 

herbs have been established as a high-polyphenol source. It has anti-inflammatory 

(Adaramoye et al., 2017), antimicrobial (Oguegbulu et al., 2020) antioxidative 

(Adefisan et al., 2019), anti-proliferative (Adaramoye et al., 2015), anti-convulsant 

(Root, 1988) as well as analgesic  (Aguwa and Lawal, 1988; Agunu et al., 2005) 

properties. 

 

1.2 STATEMENT OF THE PROBLEM  

Several decades back, different combinations of cytotoxic agents were proposed and 

tested. In metastatic and adjuvant settings, combination chemotherapy became the 

standard method of BC treatment (Sledge et al., 2014). Doxorubicin was first used in 

clinical trials in the late 1960s and early 1970s, and it was thought to be a very effective 

therapy against BC, followed by anthracycline-based combos and cyclophosphamide. 

The frequent use of combination therapy in malignant BC patients has been called into 

doubt (Veronesi et al., 2005). This is because several randomised trials carried out in 

comparing single agent doxorubicin to single agent paclitaxel as well as  the merging of  

both agents stipulated that the combination of the two agents generated a higher degree 

of response and a longer time to therapeutic failure, but no difference in survival 

rates.(Bray et al., 2004).  

 

This findings as well as other trials put a set-back on the use of combination 

chemotherapy while sequential use of single-agent chemotherapy was accepted as the 

standard of care (Sledge et al., 2014). On the contrary, combination therapy clinical 

trials as well as  successive back-to-back therapy was interminable which gives rise to 

third generation of adjuvant chemotherapy trials since most of the headway in BC 

treatment ensue due to the development of adjuvant chemotherapy (Jones, 2008).  
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BC that has receptor for estrogen (ER+) is one of the most often diagnosed cancers 

around the globe, however, anti-estrogen have globally impacted treatment intervention 

in cancer medicine (Aiyer and Gupta, 2011; Anderson et al., 2014; Parodi et al., 2017). 

The use of selective estrogen receptor modulator tamoxifen or aromatase inhibitor as 

therapy for five years enhances overall survival and lower BC reapperance in patients 

diagnosed with first phase ER-positive BC and is widely accepted as standard of care .  

However, there is still insistent risk of tumor reoccurrence beyond five years of 

treatment despite the use of adjuvant therapy with endocrine agents (Arzi et al., 2020). 

Nonetheless, resistance to combination and endocrine therapies remains a clinical and 

scientific threat. 

 

1.3 RATIONALE FOR THE STUDY 

Due to anticancer drug resistance, which leads to recurrence, anticancer medications' 

harsh and non-selective effects, and the aggressive nature of breast tumors, lesser output 

in BC treatment has been achieved (Lantz et al., 2007). In addition, medical approach 

against female reproductive dysfunction has been less successful (Elvis et al., 2016). On 

prostate cancer cells, anti-oxidants and polyhenolic chemicals in CP are said to have 

anti-oxidative and cytotoxic effects  (Adaramoye et al., 2015). The promise in cancer 

treatment and reproductive dysfunction by phytocompounds has become crucial due to 

the limits of current therapy options. The main objective of this study is to investigate 

the protective effects of fractions of C. portoricensis on MNU-induced mammary and 

reproductive toxicities. 

 

1.4 SPECIFIC OBJECTIVES 

• To investigate the protective effect of methanol extract of CP on serum 

parameters, antioxidants status, and hormone receptors in MNU-administered rats. 

• To assess the most potent fraction of root bark of CP in vitro using antioxidants 

methods. 

• To examine the chemopreventive impact of the most potent fraction of CP on 

serum biochemical indices, hormonal profile, antioxidants status, apoptotic, and 

inflammatory biomarkers in MNU and BP-induced rats. 

• To investigate possible anti-proliferative, antioxidative, and apoptotic effects of 

the most potent fraction of CP on MCF-7 cell line and cell lysates. 
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• To examine the possible curative impact of the most potent fraction of CP on 

antioxidant parameters, apoptotic, and inflammatory indices in MNU and BP-induced 

rats. 
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Figure 1.1: Normal breast tissue structure (Sims et al., 2007) 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 BREAST CANCER 

Cancer is a term that refers to a group of diseases that cause cell mutation and 

uncontrolled growth (Jaglanian, 2020). Almost all kinds of cancer cells literally form a 

lump known as tumor  (Webb and Kukard, 2020)). These tumors are named after the 

body parts they originate from. BC can therefore be referred to as uncontrolled 

proliferated cells originating from the breast tissues  (Prakash et al., 2019). Generally, 

cancer cells are known to be similar to the organism cells they originate from with 

similar DNA and RNA but not identical. This is the reason why the immune system 

(especially weakened immune system) can not detect most cancer cells at the initial 

stage  (Acosta-casique et al., 2018). RNA and DNA modifications in normal cells give 

rise to cancer cells. These alterations may be induced by factors such as radiations, 

viruses, bacteria, fungi, tissue inflammation and irritation, heat, free radicals, 

environmental chemicals,  and DNA and RNA ageing  (Kurubanjerdjit, 2020). All these 

agents can bring about alterations that may initiate cancer  (Knickle et al., 2018). Also, 

unfavourable conditions such as unhealthy environment, genetic predisposition to 

mutations, poor diets, and old age often results to high rate of DNA and RNA mutations 

( Kittaneh nd Montero, 2013). 

Breast cancer has been the major leading cancer in women around the world, both in 

industralized and emerging nations (Ediriweera et al., 2020; Taka et al., 2021). The 

existence of BC has been reported around the globe with high income countries having 

higher incidence rate which varies based on race and ethnicity (Desantis et al., 2014). 

Despite remarkable approach in diagnosing and treating BC, there are still unresolved 

clinical and scientific mystery (Illiano et al., 2018; Alehaideb et al., 2020) . In 2020, 

WHO reported BC as the 5th major cause of cancer deaths around the globe with 

approximately 685,000 mortality ascribed to it. In Nigeria, increase in urbanisation and 
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lifestyle changes have contributed to increase in BC cases which are historically low 

until the recent development in lifestyle expectancy and adjustments  (Scully et al., 

2012). 

2.2 BREAST 

The two types of tissues that make up the breast include: 

➢ Secretory tissues (Glandular) 

➢ Supporting tissues (Stromal) 

Glandular tissues- Glandular tissues contain lobules and the ducts (i.e the milk-

producing secretory vessel and the milk passage). The ducts are the tubes that connect 

the lobules to the nipple. 

Stromal tissues- This includes the breast's adipose and threadlike connective tissues. 

Lymphatic tissue-immune system of the breast helps to remove cellular fluids and 

debris. (Saldara et al., 2014).  

Different tumour types may emanate from different areas of the breast. Generally, non-

cancerous (benign) changes that occur within the breast results into larger percent of 

developed breast tumours ( Kerdelhu et al., 2016; Kai et al., 2018). Examples includes 

developed cyst which consists of packets of accumulated fluids, fibrosis, breast pain and 

lumpiness and thickening areas (Akram et al., 2017). The cells lining the ducts are 

where the majority of breast tumors begin (ductal cancers). Some cancers start in the 

cells that line the lobules (lobule cancer), whereas others start elsewhere (Jemal et al.,  

2010). 

The majority of lumps are benign, meaning they will not spread to other regions of the 

body or kill the patient (Shindikar et al., 2016). Almost all cancers at this stage are 

curable, since some breast cancers are limited within the ducts or breast lobules and 

certain breast tumors are in situ (Utage et al., 2018). Furthermore, most malignant breast 

tumours are invasive, entering the breast surrounding tissues through the duct and 

glandular walls (Weber et al., 2014). The extent to which BC cells invade surrounding 

tissues is determined by the stage of the disease (Wang, 2017; Jaglanian, 2020).  
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Figure 2.1: Structure of the Breast (Benson and Jatoi, 2012) 
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2.3 TYPES OF BREAST CANCER 

2.3.1 Non-Intrusive Breast Cancer- These are cells that only reside in the tubes and 

so don't spread throughout the breast's connective and fatty tissues. Ductal carcinoma in 

situ (DCIS) is now the most prevalent kind of non-intrusive breast cancer, which 

accounts for about 90% of all cases (Weigelt et al., 2010). Despite the fact that lobular 

carcinoma in situ (LCIS) is not as prevalent as DCIS. It is one of the most significant 

BC risk factors. 

2.3.2 Intrusive Breast Cancer- These are invading cells that penetrate the 

connective and fatty tissues of the breast by breaking through the duct and lobular walls. 

Cancer cells can be intrusive even if they haven't progressed to the lymph nodes or other 

organs (Bray et al., 2004). 

2.3.3 Common Occurrence in Breast Cancer 

2.3.3a In situ lobular cancer (LCIS) 

Cancer cells that have not gone beyond the initial formed area are referred to be ‘in 

situ’. LCIS is defined by a considerable spike in cells number in the breast lobules.  

2.3.3b In situ ductal carcinoma (DCIS) 

Most of the prevalent forms of non-invasive BC occur when the breast duct becomes 

restricted. 
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Figure 2.2:  Breast Tissue structure showing the ducts, lobules, and fatty tissue 

(Veronesi et al., 2005) 
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Figure 2.3: Typical Structure Related to Ductal Carcinoma (Veronesi et al., 2005) 
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2.3.3c Infiltrating lobular carcinoma (ILC) 

Infiltrating lobular carcinoma (ILC) commence from the lobules (milk secretory vessels) 

of the breast and extends to other body parts. A significant proportion of BCs are caused 

by it (Cedolini et al., 2014). 

2.3.3d Infiltrating ductal carcinoma (IDC) 

Intrusive ductal carcinoma is another name for IDC. Breast milk ducts are the first to 

develop IDC, which spreads through the duct wall, into connective, fatty, and other 

body tissues. It is responsible for more than 80% of all female cancers (Jones, 2008). 

2.3.4 Less frequently occurring breast cancer 

2.2.4a  Carcinoma of the medullary gland 

Medullary carcinoma is a tumor that has created a distinct barrier between normal and 

malignant tissue (an invasive BC). This form of cancer makes up  5% of all BC cases 

(Taylor et al., 2010). 

2.3.4b Mutinous Carcinoma 

Colloid carcinoma is another name for mutinous carcinoma. Mutinous carcinoma 

diagnosed patients have higher chances of better prognosis than patients diagnosed with 

regular invasive carcinoma (Kittaneh and Montero, 2013). It is known to be generated 

by mucus-producing cells in the breast. 

2.3.4c Tubular Carcinoma 

Invading breast carcinoma is uncommon. Invasive carcinoma patients have a worse 

prognosis than tubular carcinoma patients. This only accounts for about 2% BC 

diagnoses (Hamed et al., 2018). 

2.3.4d Inflammatory Breast Cancer 

As a result of cancer cells clogging lymph arteries, red and hot appearance of an 

inflammatory breast with dimples and thick ridges appears (Lantz et al., 2007). It is very 

aggressive because it is an unusual type of tumor accounting for 1% of all cases. 
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(invasive). Inflammatory breast cancer is considered an aggressive and unsual cancer 

because it grows quickly, more likely to have spread at the time it’s found, and is more 

likely to come back after treatment than other types of breast cancer. 

2.3.4e Paget’s disease of the nipple 

This is an infrequent tumor type that starts in the duct and progresses to nipple area and 

breast areola. It is an unsual cases that accounts for only 1% of BC cases (Cedolini et 

al., 2014). 

2.3.4f Phylloides Tumor 

Phylloides tumor which is either cancerous or non-cancerous begins in the breast 

connective tissues. It can be treated through surgical procedures. Phylloides tumors are 

special cases of about 2% mortality in women yearly. It is also spelled as ‘phyllodes’ 

(Stephen, 2008). 

2.4 CAUSES OF BREAST CANCER 

2.4.1 Having had BC in the past 

Women suffering from BC history likely to get cancer in other parts of the breast (Shah 

et al., 2014). 

2.4.2 Family history 

The risk of BC developing in women is higher if they have a family history of the 

disease, especially if their mother, daughter, or sister originally developed it  (Biau et 

al., 2016). If more than one members of the family has had BC before, the risk is 

significantly higher, and it is even higher if the relative was younger at the time of 

diagnosis  (Dai et al., 2018). 

2.4.3 Genetic Causes 

In genetic predisposition, both paternal and maternal genetic composition contributes to 

the risk factor. According to a previous study, defects in BC vulnerability genes BRCA1 

and BRCA2 are accountable for 5% to 10% of breast tumor cases. (Sanguinetti et al., 

2015). Women with BRCA mutations are expected to develop BC at a rate of 57% as 

they get older (Jemal et al., 2014). 
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2.4.4 Hormonal Causes 

Incidence of BC increases with changes or imbalance in hormone levels. Alteration in 

hormone levels could be as a result of use of contraceptive pills, irregularity in 

menstrual cycle, early age pregnancy etc (Wang, 2017). 

2.4.5 Environmental Causes 

Women who work in industrial locations, are exposed to environmental contaminants, 

have long-term low-dose radiation exposure, or have undergone intense radiation 

treatment at younger age in the chest, are at increased chance of developing breast tumor 

(Gray et al., 2017). 

2.5 SIGNS AND SYMPTOMS 

When the tumor is small enough to be treated, BC usually has no symptoms (Lantz et 

al., 2007). 

2.5.1 Early Stage 

The presence of lumps in the breast or armpit is early onset of BC. Early look out for 

presence of lumps can be achieved by consistent breast self-examination (BSE) either by 

self or through the help of second party. This makes it easier to recognize breast size, 

texture, changes and condition. Basic alarming traits to look out for in the breast are 

swelling in the breast (lump), swelling armpits (lymph nodes), nipple abnormalities, 

unusual discomfort in the breast, discharge from the nipple which could either be clear 

or bloody discharge, nipple pains and scaly nipple (Fatima et al., 2017). 

2.5.2 Advanced Stage (Metastasis) 

Shortness of breath (lung metastasis), bone pain (bone metastasis), low appetite, 

weakness, unexplained weight loss (liver metastasis) and headaches are all indications 

of breast metastasis (Lantz et al., 2007; Scully et al., 2012) 

2.6 BREAST CANCER DIAGNOSIS 

Early stage diagnosing in cancer treatment is important to BC patients. The screening 

can be done from a variety of diagnostic platforms. One of the main diagnostic ways for 
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collecting relevant data from patients with BC is to use imaging tools such as 

Mammography, magnetic resonance imaging (MRI) etc. (Hamed et al., 2018).  

2.7 BREAST CANCER MOLECULAR SUBTYPES 

The vast molecular and clinical heterogeneity of BC may be separated into four distinct 

subtypes, each of which is defined in part by the hormone receptor (HR) and other types 

of proteins associated in each tumour  (Fatima et al., 2017). Healthy breast cells usually 

have estrogen and progesterone as well as a protein called HER-2 which promotes 

normal cell proliferation (Khalki et al., 2020). Two out of every three women diagnosed 

with BC had estrogen and progesterone receptors (Bagheri et al., 2018). Also, about 20-

30% of BCs have too many HER-2 proteins (Anderson et al., 2014). BC that has 

receptors for estrogen (ER+) or progesterone (PR+) can be given hormone therapy. 

However, BC with excessive HER-2 expression, on the other hand,  can be given anti-

HER-2 targeted therapy medications like trastuzumab, perjeta, Tykerb, Nerlynx and 

Kadcyla (Anderson et al., 2014). Hormone therapy is not an option for people with 

triple negative BC as well as medicines that block HER-2, since they lack receptors for 

estrogen, progesterone, or HER-2. Chemotherapy, radiation treatment, and non-HER-2 

targeted therapy are all options for treating triple negative breast cancer (Scully et al., 

2012). 

2.7.1 Luminal A- (HR positive / HER2-negative) 

It is also referred to as HER-2 negative (Human Epidermal growth factor receptor-2). 

Luminal A is a common molecular subgroup of BC, and it grows more slowly than other 

cancer types. ER+ or PR+ people have positive hormone receptors. This subgroup has a 

low amount of Ki-67 (a proliferative marker in breast cancer), a protein that controls 

how quickly cancer cells multiply. 

 PR+ 

   Luminal A   ER+  

   HER- 
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2.7.2 Luminal B- (HR positive / HER2-positive/negative) 

This particular subtype depicts both HER positive and HER negative due to 

overexpression of HER-2. Luminal B cancer cells proliferate more quickly than Luminal 

A cancer cells and are therefore regarded more aggressive (Prakash et al., 2019). They 

have greater levels of Ki-67 and are positive for hormone receptors. 

  PR+ 

 Luminal B ER+ 

 HER+ or HER- 

2.7.3 Triple-negative / Basal-like (HR / HER2-negative) 

The cells in this kind of cancer lack estrogen, progesterone or HER-2 receptors. BC that 

begins in the breast ducts is frequently invasive (Alessandra et al., 2018; Arzi et al., 

2020) . This is usually observed in women with BRCA 1 gene mutations. 

 PR- 

 Basal-like ER- 

 HER- 

2.7.4 HER-2 positive / HER-2 enriched 

HER-2  is found in one out of every five invasive BCs. Cancers that are HER-2 positive 

are also ER-, PR- and HER-2 positive (Li et al., 2019). This BC subtgroup has an excess 

of HER-2 gene copies, resulting in the presence of HER-2 protein receptors on breast 

cells. In ordinary situations, Her-2 sensors control how a healthy breast cell forms, 

proliferate, and fixes itself  (Shehata et al., 2012). When the cells proliferate, on the 

other hand, the receptors instruct the cells to divide and grow uncontrollably as a result 

of excessive absorption of HER-2. 

  PR- 

 HER-2 Enriched  ER- 

 HER+ 



18 
 

 

2.8 MANAGEMENT OF BREAST CANCER 

The patient and physician choose the finest treatment options according to the tumor 

grade. The biological properties of the tumor, the patient's age and interests, as well as 

the advantages and disadvantages of possible treatment also must be addressed before 

treatment begins (Gallego-ortega and Ormandy, 2014). Surgery is commonly used to 

treat BC patients and it is frequently combined with additional treatments such as 

chemotherapy, hormone therapy, radiation therapy, or biologic therapy (Gallego-

ortega and Ormandy, 2014). 

2.8.1 SURGERY 

Based on the stage and nature of tumor, surgery may be required to remove cancer from 

the breast. Different surgical procedures include:  

2.8.1a Lumpectomy 

It entails the excision of malignant tissue as well as a rim of normal tissue that is 

eliminated entirely. 

2.8.1b Simple or Total Mastectomy 

The entire breast is surgically removed during this operation. 

2.8.1c Mastectomy using a Modified Radical Mastectomy 

The complete breast and underarm lymph nodes must be removed, but not the 

surrounding chest wall muscle. Because of the proven efficacy of less invasive and 

disfiguring procedures, radical mastectomy is less commonly utilized or recommended 

(Bray et al., 2004). 

Depending on the surgical type chosen by both the patient and physician, both 

lumpectomy and mastectomy is frequently followed by lymph node removal from the 

armpit to see if the cancer has spread to other body parts (Scully et al., 2012). The 

detection of cancer cells in the lymphoid tissue will indicates whether or not more 

therapy is necessary, as well as the process to be followed. However, lumpectomy is 

often followed by radiation therapy. 
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Figure 2.4: Varieties of surgical procedures used in BC (Mamounas et al., 2014) 
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2.8.2 RADIATION THERAPY 

Radiation therapy is used to slow tumor growth before surgery and to destroy cancerous 

cells which persist after surgery in the breast, chest wall, or armpit. This procedure 

involves focusing radiation on the cancer-affected areas, which include the entire breast 

and other affected areas (Webb and Kukard, 2020). The sort of radiation therapy used is 

determined by the type, stage, and site of the tumor being treated (Lulu, 2017). 

Radiation therapy is divided into two categories;  

2.8.2a Internal Radiation Therapy 

This is also known as brachy-therapy. It entails the use of radioactive substance 

contained in catheters, needles, or wires that are inserted into the cancer directly (Wahba 

and El-Hadaad, 2015). 

2.8.2b External Beam Radiation 

Radiation therapy is normally given over five to seven weeks period. It is frequently 

prescribed, after a lumpectomy and in rare situations after a mastectomy.  

2.8.3 SYSTEMIC THERAPY 

As part of systemic therapy, anti-cancer drugs can be given intravenously or consumed 

orally. It can be recommended both before and after surgery. This therapy process 

includes chemotherapy, hormone therapy, and biologic therapy.  

2.8.3a Neo-adjuvant Systemic Therapy 

Adjuvant therapy given before the main treatment is called neo-adjuvant therapy. This 

type of adjuvant therapy can also decrease the chance of the cancer coming back, and 

it’s often used to make the primary treatment such as an operation or radiation treatment 

easier or more effective. It is a term for the treatment offered to a patient before surgery. 

It is usually recommended before surgery. It helps to shrink tumor size by making 

surgical removal process possible, easy and also allow for less extensive surgery. This 
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process helps patients needed to undergo mastectomy otherwise opt for breast-

conserving surgery. 

2.8.3b Adjuvant Systemic Therapy 

It is a term for the treatment offered to a patient following surgery. After all obvious and 

detectable malignancy has been eliminated; it is commonly employed to destroy hidden 

cancerous cells that have invaded other body parts. Since surgical removal of the 

complete cancer cell is impossible in metastatic breast cancer, systemic therapy is 

frequently advised. As a result, one of the most commonly suggested therapy 

alternatives is systematic therapies.  Adjuvant treatment is intended to eliminate or delay 

the appearance of occult micro-metastatic disease, which is believed to be responsible 

for distant treatment failures after local therapy. Adjuvant chemotherapy has been used 

in an attempt to reduce recurrence and to improve long-term survival. 

2.8.4 BIOLOGIC THERAPY 

HER2/neu growth-promoting proteins are over expressed in about 15%-30% of BC 

cases (Tuli et al., 2019). They tend to grow faster and are most like likely to reccur than 

tumors that do not over expressed HER2.  However, a monoclonal antibody, 

trastuzumab, helps to directly combat the HER2 over expression in breast tumors, by 

improving survival benefit in women with metastatic breast cancer (Diermeier-Daucher 

et al., 2012). Short comings of breast cancer treatment that affect quality of life results 

in brief and prolonged side effects which includes fatigue, psychological distress, 

hormonal symptoms etc. Physical activity, on the other hand, has been proven to help 

alleviate some of the negative effects of BC and its therapy in various studies 

(Kantarjian et al., 2017; Stein et al., 2018 and Schuster et al., 2019). 
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Figure 2.5: Two theories about how breast cancer starts and progresses (Taylor et 

al., 2010) 

 

A- All tumor subtypes are made out of the same stem cells or progenitor cells. 

B- Each tumor subtype develops from a single type of cell (stem cell, progenitor 

cellor differentiated cell). 
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2.9 RISK FACTORS 

Risks are divided into changeable and non-modifiable categories. 

The following are the key modifiable risk factors for BC 

2.9.1 Overweight and Obesity 

Obese older women who have had their first menstrual cycle early and have already 

entered menopause are known to have an increased risk of  BC.  Numerous studies have 

connected obesity to BC (Kai et al., 2018). It has been discovered that high amounts of 

insulin and insulin-like factors in response to obesity can stimulate cancer cell 

development (Horgan et al., 2019; Jaglanian, 2020). 

2.9.2 Smoking 

Active smokers, both post-menopausal and prenatal, have an increased risk of getting 

BC (Umthong et al., 2011). Passive smoking is also connected to the development of 

BC (Akram, 2017). 

2.9.3 Alcohol 

Overindulging in alcoholic beverages can increase the risk of BC. Romieu and 

colleagues, reported a correlation between alcohol intake and hormone receptor-positive 

and negative cancers (Sun et al., 2017). 
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2.10 Reproductive Toxicity 

Human exposure to environmental toxicants has recently been on the rise thereby 

inducing their impacts on reproductive functions (Hunt et al., 2016; Sifakis et al., 2017). 

Examples of these toxicants includes aflatoxin, cadmium, BP, MNU etc (Dyer, 2014; 

Louis et al., 2016; Ma et al., 2019). Cadmium and benzo[a]pyrene have been 

demonstrated to be very poisonous to humans and animals (Shah et al., 2014). Industrial 

use of these toxicants contributes to its accumulation in the environment ( Knez, 2013; 

Bhardwaj, 2015). Following acute poisoning, they have been demonstrated to target 

several organs, resulting in reproductive toxicity, nephrotoxicity, carcinogenicity, 

teratogenicity, endocrine and immune toxicity (Luccio-camelo and Prins, 2011; 

Miyagawa et al., 2011; Uzumcu and Zama, 2016).  

The female reproductive system is known to play a major physiological function to 

produce ovum necessary for healthy progeny (Diamanti-Kandarakis et al., 2009; Zama 

nd Uzumcu, 2010; Smarr et al., 2016) . Ovum formation and other reproductive 

activities are aided by the ovarian steroid hormones ( Craig and  Wang, 2011; Béranger 

et al., 2012). Hormones released by the brain and pituitary control the ovary’s and 

endometrium’s cyclical changes (Smarr et al., 2016). Cadmium, BP, MNU have been 

documented to target ovary and the uterus by suppressing the production of hormones 

(Mamounas et al., 2012). Oxidative stress has been linked to the etiology of infertility in 

both male and female reproductive organs. Approximately 50% of infertility cases are as 

a result of male reproductive pathologies which are either acquired or congenital thereby 

impairing spermatogenesis as well as fertility ( Elvis et al., 2016; Ziv-Gal and Flaws, 

2016; Vander and Wyns, 2018; Ma et al., 2019). Since sperm count and motility are the 

most important determinants of fertilization strength, men with high levels of oxidative 

stress or DNA damaged sperm are likely to become infertile (Knez, 2013; Uloma et al., 

2016). On the contrary, oxidative stress in female infertility as a result of environmental 

toxicants continues to be a hot topic because various research have presented 

inconclusive information about oxidative stress impact on female reproductive organs 

(Kristini et al., 2014; Ziv-Gal and Flaws, 2016; Vander and Wyns, 2018) . 
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2.11 N-nitroso-N-methylurea 

Chemical carcinogens have been used to create tumors in many organs in experimental 

animals for several decades (Knez, 2013). MNU is a well-known mammary carcinogens 

and direct alkylating chemical that requires no metabolic activation (Kinoshita et al., 

2016). On the basis of substantial evidence of carcinogenicity in experimental animals, 

MNU has been proven and widely regarded to be a human carcinogen and toxicant 

(Tueche et al., 2018). 

Pharmaceutical items, cosmetics, and other small exposure sources include diet (smoked 

and fried fish, beer), profession (beautician, plastics, steel, and farming), societal habits 

(cigarette inhalation), laboratory use, and small contact causes etc (Raj et al., 2003). 

Accumulation of this chemical in food is linked to processing circumstances ncluding 

pickled foods kept in humidified condition, smoked in nitrogen rich air, cooked with 

elevated heat and given nitrate or nitrite (Stuff et al., 2009).  

In rats, mice and fishes, MNU may act as a carcinogen, causing cancer to grow in the 

breast, uterus, ovary, prostate, liver and intestine (Faustino-Rocha et al., 2015). The 

development of lesions in various tissues is dependent on the animal species, strain, age, 

MNU dose, and method of administration. In humans, acute exposure to MNU can 

cause irritation of the eyes and skin, nausea, migraines, and diarrhea (Sledge et al., 

2014; Faustino et al., 2015). This model, according to Gullino and colleagues, is the 

most straight forward method for inducing mammary cancer cells in rats, which have 

many similarities to humans in terms of tumor origin, connection with steroids 

hormones and the appearance of their receptors, aggressiveness, modifications in the 

Wint/Beta-catenin pathway, and expression of several genes. (p53, caspases etc) in 

human mammary carcinogenesis (Faustino et al., 2015). 
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Figure 2.6: N-nitroso-N-methylurea (Narayanan et al.,  2003) 
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2.12 Benzo[a]pyrene 

The environmental pollutant benzo[a]pyrene (BP) is generated by incomplete 

combustion, pyrolysis of organic materials, which initiates and promotes cancer 

development (Alessandra-Perini et al., 2018; Knickle et al., 2018). Except near their 

sources, these compounds can be found in trace amounts in water, soils, air, and 

sediments (Cambridge et al., 2006). They are also found in a variety of foods and a few 

pharmaceuticals. By initiating skin carcinogenesis in mice, BP was found to have both a 

local and systemic carcinogenic effect, as well as being carcinogenic in single-dose tests 

(Pugalendhi et al., 2011). Cytochrome P450 (CYP1A1) and (CYP1B1) has been 

identified as the major catalyst in the metabolism of BP and other polycyclic aromatic 

hydrocarbons (Nguyen et al., 2019) . Several findings have documented CYP1A1 as the 

enzyme with the highest affinity for BP metabolism (Remani, 2019).  

When cytochrome P450, particularly CYP1A1 and CYP1B1, metabolically activates BP, 

more reactive molecules are produced. such as BP-7,8-dihydrodiol-9,10-epoxide which 

react with DNA to produce DNA adducts (Whitsett et al., 2006). The synthesis of 

benzo[a]pyrene -7,8-epoxide, catalyzed by CYP450 1A1, is the initial step in BP 

bioactivation, followed by epoxide hydrolase to generate the BP-7,8-dihydrodiol 

metabolite. Cytochrome P450 1A1 converts this to the BP-7,8-dihydrodiol-9,10-epoxide 

species also known as diol epoxide (Arumugam et al., 2014). Sources of exposures to 

BP includes tobacco smoke, cigarette smoke, industrial emission, motor vehicle exhaust, 

cooking and residential and commercial heating of organic fuel (Nvau et al., 2020).  

Findings have reported sides stream cigarette smoke to be three times higher in BP 

concentration than mainstream smoker (Jemal et al., 2010). Meats that have been 

barbecued, grilled, or smoked, fried meals that have been processed at high 

temperatures, bread and grains are all sources of polycyclic aromatic hydrocarbons in 

the diet (Taylor et al., 2006). Occupational exposures primarily occur through skin 

contact and inhalation (Raj et al., 2003). BP induces tumors such as lung tumours, skin 

tumours, liver tumours, forestomach tumours, as well as mammary gland tumours in 

many species (Whitsett et al., 2006 ). Human exposures to BP are linked with series of 

cancers such as in coke production: lung; coal gasifications: bladder, lung etc (Taylor et 

al., 2006) 
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Figure 2.7: Structure of Benzo[a]pyrene (Schwarz et al., 2001)  
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Figure 2.8: Metabolism of Benzo[a]pyerene (Kim et al., 1998). 
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2.13 C. portoricensis 

2.13.1 ETHNOMEDICINAL VALUES 

C. portoricensis (CP) is a multifaceted plant with a wide range of therapeutic 

applications. Powder puff, sometimes called CP, is a leguminosae (legume family) 

permanent shrub (Olorunsogo, 2018 and Oyebode et al., 2019). It blooms with white 

fragrant flowers that resemble snowballs. It is known as 'Tude' in Yoruba, 'Ule' in Igbo, 

and 'Oga' in Hausa in Nigeria. In distribution, there are over 200 species of CP 

distributed across tropical and sub-tropical areas of America, Asia and Africa. Species 

of Calliandra includes C. eriophylla, C. anomala, C. haematocephela, C. portoricensis 

among others (Peter et al., 2012). The CP is traditionally used in Nigeria herbal homes 

for treating breast engorgement and other related diseases.  

In South eastern and South western Nigeria, traditional herbal homes have successfully 

explored CP extracts to treat snake bites, diarrhoea, pain relief and for managing sickle 

cell crisis (Amujoyegbe et al., 2014). It is also used as worm expeller, for treating 

toothache, coated tongue and enlarged tonsil. Rahaman Onike, 2010 equally reported 

that a book entitled ‘A textbook of Medicinal Plants’ documented the use of CP in 

treating fever, stomach disorder, amenorrhoea, and lumbago. In Ghana, it was reported 

that the root bark of CP when mixed with pepper can be used for treating gonorrhoea, 

headache relief, promoting sneezing and in ophthalmic preparation (Agunu et al., 2005). 

Also, traditionally, its concoctions are used for treating snakebites by grounding the 

roots into powder or squeezing the leaves juice into alcohoholic beverage (Onyeama et 

al., 2013). Despite its numerous advantages, nothing is known regarding its impact on 

BC and reproductive dysfunction. 

2.13.2 PHYTOCHEMICAL SCREENING AND COMPOSITION OF C. 

portoricensis 

Onyeama et al., (2012) qualitatively evaluated CP extract for alkaloids, saponins, 

tannins, flavonoids, polyphenols, reducing chemicals, glycosides, phlobatanins, 

anthraquinones and hydroxymethyl groups (Onyeama et al., 2013; Mileo et al., 2019). 

His findings showed the phytochemical screening of CP extract confirmed the absence 

of tannins, phlobatannins, anthraquinesand hydroxymethyl anthraquines in both fresh 

and dry samples (Gbadamosi, 2012). In addition, he reported the presence of alkaloids 
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and glycosides (Tiwari and Rai, 2016). He also stated that alkaloids functions and 

importance in plants metabolism are arguable because most alkaloids are known to be 

very toxic. Furthermore,  flavonoids, steroids, polyphenols, glycosides, saponins and 

reducing chemicals were discovered in the phytochemical screening of CP (Orishadipe 

et al., 2010; Onyeama et al., 2012; 2013). 

2.13.3 ANTIMICROBIAL AND ANTI-ULCER ACTIVITIES OF C. 

portoricensis 

Aguwa and Lawal, (1988), were the first to report on the antibacterial properties of CP, 

utilizing ethanol and aqeous plant extracts. However, Orishadipe et al (2010) and 

Oguegbulu et al., (2020) both demonstrated the antimicrobial activity of CP using nine 

human pathogens including fungi, gram positive and negative bacteria namely 

Staphylococcus aureus, Escherichia coli, Bacillus subtilis, Klebsiella pneumonia, 

Streptococus fecalis, Candisa albican, Samonella gallinallum, Pseudomonas 

aeruginosa, and Aspergillus nigar (Orishadipe et al., 2010). According to Oguegbulu et 

al., (2020) the leaf and root extracts of CP had antibacterial and antifungal activity 

against a variety of human infections, with the leaf extract having lower antibacterial 

and antifungal characteristics than the root extract.  

Similarly, Orishadipe et al., (2010) equally demonstrated that the n-hexane extract of CP 

was active against S. aureus, E.coli and S. gallinallum while no activity was reported for 

K. pneumonia, B. subtilis, and P. aeruginosa respectively (Aguwa and Lawal, 1988; 

Orishadipe et al., 2010). Also, Aguwa and Lawal reported the anti-ulcer activity of 

ethanol and aqueous extract of CP by using indomethacin-induced ulcers model (Aguwa 

and Lawal, 1988; Lin and Tan, 1994). Their findings documented that both extracts 

exhibited ulcerogenic effects (Ukwe, 2008). It was also stated that aqueous extract of CP 

were more effective compared to ethanol extract confirming the ulcer-protective activity 

of CP leaf extracts (Lin and Tan, 1994). 

2.13.4 CHEMICAL CONSTITUENTS OF C. portoricensis USING GC-MS 

Orishadipe et al., (2010) investigated the chemical contents of CP using GC-MS, and 

their findings documented the existence of the following identified chemicals in the 

hexane fraction of C. portoricensis root bark; undecane, dodecane, decenal, 4-

ethyoxcyclohexanone, 3,7-dimethylundecane, tetradecane, 2-methyltetradecane, 
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tetradecanoic acid methyl ester, 9-hexedecenoic acid methyl ester, 14-

methylpentadecanoic acid methyl ester, hexadecanoic acid, hexadecanoic acid ethyl 

ester and 14-methylhexadecanoic acid methyl ester. Some of the compounds that were 

not identified according to his report were as a result of low concentration which is less 

than 2% as required by the gas chromatography-mass spectrometry machine. NIST 62 

library was employed to compare the mass spectrum of each identified compound 

(Orishadipe et al., 2010). 

2.13.5 ANTICONVULSANT AND ANALGESIC ACTIVITIES OF C. 

portoricensis 

C. portoricensis has been widely used traditionally by Southern part of Nigeria for 

treating convulsions and gastrointestinal problems. The anticonvulsant property of CP 

was first reported by Adesina and Akinwumi, (1988). However, Akah et al., (1987) 

equally demonstrated anticonvulsant activity of CP using pentylenetetrazole and 

electroshock-induced convulsion model. His findings demonstrated that the aqueous 

extracts of both CP root and stem proffered protection against PTZ- and electroshock-

induced convulsions in mice, thus, possessing anticonvulsant activity when administered 

intraperitoneally (Aguwa and Lawal, 1988).  

Using acetic acid-induced squirming and formalin distress provocation tests, Agunu et 

al., (2005) assessed the analgesic activity effectiveness of CP root and leaf methanol 

extracts in mice and rats. Their finding suggested that the root and leaf extracts of CP 

have analgesic property by subduing abdomoinal cramping induced by acetic acid as 

well as the abdominal pains triggered by the formalin test (Correa et al., 1993; 

Amujoyegbe et al., 2014) 

2.13.6 ANTIOXIDANT AND ANTI-VENOM PROPERTIES OF C. portoricensis 

Traditional herbalists over the years have explored the use of ethanol extract of CP by 

squeezing out the juicy part of the plants specifically as anti-haemotoxin of snakebites. 

However, studies have corroborated the use of CP traditionally in South eastern part of 

Nigeria for treating snake bites and oxidative stress generated in envenomed rats ( Pe et 

al., 2012; Onyeama et al., 2013). Onyeama and collaborators clearly stated that the 

viperian venom overwhelmed the naturally-existing antioxidant defense enzymes in 

experimental rats. Also, their findings further suggested that the ethanol and methanol 
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extract of CP may be useful in alleviating and reversing the haemotoxin-induced 

haemotoxicity in Wistar rats as a result of an increase in haemoglobin concentration 

following co-administration of CP. In addition, CP methanol extract also stimulated 

antioxidant defenses in male Wistar rats, according to Pe et al., (2012). Furthermore, 

Adaramoye et al., (2015) equally established the antioxidative capacity of CP methanol 

extract in vitro by displaying strong reducing activities. 

 

2.13.7 ANTI-PROLIFERATIVE AND CYTOTOXIC EFFECTS OF C. 

portoricensis 

Adaramoye et al., (2015) examined the anti-proliferative effects of C. portoricensis on 

LNCaP and PC-3 cells and discovered that PC-3 growth was inhibited in a 

concentration-dependent way. In addition, their studies confirmed CP's anti-angiogenic 

action in CAMs, with the results indicating a considerable reduction in vessel size in 

CAMs (Adaramoye et al., 2015; Oyebode et al., 2019, 2018) . Furthermore, Oyebode et 

al., (2018; 2019) also found that the methanol portion of CP suppressed the proliferation 

of LNCaP, DU-145, lung cancer and healthy VERO cells respectively.  

2.13.8 SAFETY AND TOXICITY OF C. portoricensis 

Chronic treatment of C. portoricensis root and leat extract to mice and rats may affect 

gastrointestinal and pancreas function (Ofusori et al., 2011). The lethal dose acute 

toxicity of the CP was demonstrated by Onyeama et al., (2013). They reported that 

administration of the CP extract at 39mg/kg, 625mg/kg and 10,000mg/kg resulted in 

high mortality in the last two groups except in the first that received 39mg/kg where 

there was only one death after 24hrs.  
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Figure 2.9: Photograph of C. portoricensis (Amujoyegbe et al., 2014) 
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CHAPTER THREE 

MATERIALS AND METHODS 

3.1 CHEMICALS AND REAGENTS  

N-nitroso-N-methylurea, Benzo[a]pyrene, Dithiobis-(-2-dinitrobenzoic acid) (DTNB), 

Sulphosalicylic acid, Hydrogen peroxide, Potassium dichromate, Sodium azide, 1-

chloro-2,4-dinitrobenzene (CDNB), Trichloroacetic acid, Adrenalin, Sodium hydroxide 

(NaOH), Thiobarbituric acid (TBA), Phosphoric acid (H3PO4), Sulfazilamide, Reduced 

glutathione (GSH), Alanine aminotransferase (ALT), Aspartate aminotransferase (AST), 

Bilirubin, Naphthylene dihydroxide, Phosphoric acid, 2,2-Diphenyl-1-picrylhydrazyl 

(DPPH), 2,2-azinobis (3-ethylbenzothiazoline-6-sulfonic acid), Ammonium sulphate 

(NH4SO4), Ethylene diethylamine (EDTA), Triton-X100, kits for Interleukin-1β (IL-1β), 

BAX, Caspase-3, Caspase-9, Immunochemical staining of β-catenin, BAX, p53, 

Caspase-3, Caspase-9, Interleukins (-6 and 1β), iNOS and COX-2 proteins. Other 

chemicals and reagents were of a high analytical quality. 

3.2 PLANT MATERIAL PROCESSING AND EXTRACTION 

C. portoricensis (CP) was obtained fresh from Odofin Agbegi village, Ikire, Osun State. 

Forest Herbarium Ibadan (FHI) number 111949 was used to validate the CP. The roots 

were cleaned, stripped and dried in the laboratory for two weeks before being pulverized 

and weighed. Cold extraction was used to extract the powdered roots with n-hexane and 

methanol. The methanol extract was evaporated to dryness (40ºC). The methanol 

extracts was partitioned to get the chloroform, butanol, and ethyl-acetate fractions of 

CP. Below is the extraction flow chat of the CP. 
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Figure 3.1: Extraction process of C. portoricensis  

 

 

 

 

 

 

 

 



37 
 

3.3 DETERMINATION OF REDUCING ACTIVITY OF 2,2-DIPHENYL-1-

PICRYLHYDRAZYL (DPPH) 

The DPPH activity was carried out as stated by Menezes et al., (2001). 

Principle 

The highest optical density of freshly synthesized DPPH is 517 nm, resulting in a rich 

purple color solution. Addition of antioxidants alleviate DPPH by reducing the purple 

colour to an oxidized product 2,2-diphenyl-1-hydrazine thereby resulting into a 

reduction in optical density. The dissolution of the DPPH radical by the antioxidants can 

be assessed using spectrophotometer and expressed as radical scavenging ability. 

Preparation of Reagents; See Apendix 1 

Procedure 

40 μg -2000 μg extract was prepared in 4mL distilled water into six different test tubes. I 

mL from each test tube was dispensed into another three separate test tubes (triplicates). 

To each of the triplicate, 1mL of DPPH was added and was allowed to stand for 30 

minutes at 37ºC before reading at 517 nm. Catechin was used as standard. 

Calculation 

% I = [(AControl - Asample)/ AControl] × 100 …………………….. EQU 3.3 

Acontrol- control optical density with no test compound, Asample denotes the test compound 

optical density, and % I denotes the proportion inhibition of the DPPH oxidants. 

3.4 ASSESSMENT OF ABTS [2,2-azinobis- (3-ethylbenzothiazolin-6-sulfonic 

acid)] REDUCING ACTIVITY 

ABTS activity was carried out as stated by Roberta et al., (1999). 

Principle 

The interaction between ABTS (7 mM) in H20 and K2S2O8 (potassium persulphate; 2.45 

mM) kept in the dark at 37ºC for 12 hours generates the ABTS+ cation radical. The 

mixture was mixed with ethanol before use to get absorbance of 0.70 ± 0.025 at 734 nm.  

 



38 
 

Preparation of Reagents; See Appendix 2 

Procedure 

ABTS and potassium persulfate solution was mixed together in the dark and allowed to 

stand for 12-16 hours before use. At 12 hours 2mL of ABTS working solution was 

diluted with about 65-70 mL of acetate buffer (pH 0.5) to get a working solution at 

(0.700±0.025) using spectrophotometer preceding the reagent use. 500 µL of ABTS 

mixture was introduced into microcuvette and the extracts was added at varying 

concentrations starting from 50 µL, 100 µL, 200 µL, 300 µL and 400 µL respectively. 

An absorbance measurement was conducted for 6 minutes at 734 nm. 

3.5 THIN LAYER CHROMATOGRAPHY ASSESMENT OF FRACTIONS 

OF Calliandria portoricensis  

The origin and solvent front is marked using a pencil on a TLC plate. To spot the plate, 

a capillary tube is used to spot different fractions of CP on the marked TLC plate a 

couple of times to ensure the presence of the sample for smooth separation. Once the CP 

fractions have been spotted on the plate, it is then gently placed in a small glass capillary 

chamber filled with the mobile phase (ethylacetate-chloroform) and ensuring the origin 

spot are not below the solvent level in the chamber. The solvent is then allowed to run 

within a centimeter of the top of the plate and remove it with tweezers. Using a pencil, a 

line is immediately draw across the plate where the solvent front can be seen. The 

proper location of this solvent front line is important for calculations. The separated 

spots is observed under the UV light. 

Rf value = Distance moved by spot 

     Distance moved by solvent 

3.6 ASSAYS OF SERUM ENZYMES 

3.6.1 Aspartate Aminotransferase (AST) Activity Measurement 

The activity of AST was carried out as stated by Reitman and Frankel (1957). 

Concept 

α-oxoglutarate    +    L-aspartate      GOT  oxaloacetate    +    L - glutamate 
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AST was tested using the amount of oxaloacetate hydrazone generated by 2, 4-

dinitrophenylhydrazine. 

Reagents; See Appendix 3 

Procedure 

Phosphate buffer (100 mmol/L, pH 7.4), L-aspartate (100 mmol/L) and α-oxoglutarate 

(2 mmol/L) were mixed with the diluted sample (0.1 mL) and incubated at 37ºC (30 

minutes duration). In the reaction mixture, 2, 4-dinitrophenylhydrzine (0.5 mL; 2 

mmol/L) was added and allowed to stand at 25ºC for exactly 20 minutes. After 5 

minutes, the optical density was recorded at 546nm against the reagent blank using 

NaOH (5.0 mL; 0.4 mol/L)  

3.6.2 Alanine Aminotransferase (ALT) Activity Measurement 

The activity of ALT was carried out as stated by Reitman and Frankel (1957). 

Concept 

α-oxoglutarate + L-alanine     GPT   pyruvate + L - glutamate 

Alanine aminotransferase was tested using the amount of pyruvate hydrazone generated 

by 2, 4-dinitrophenylhydrazine. 

Preparation of Reagents; See Appendix 4 

Procedure 

Phosphate buffer (100 mmol/L, pH 7.4), L-alanine (100 mmol/L) and α-oxoglutarate (2 

mmol/L) were mixed with diluted sample (0.1 mL) and incubated at 37ºC (30 minutes 

duration). The reaction mixture was given  2, 4-dinitrophenylhydrzine (0.5 mL; 2 

mmol/L) and allowed to stand at 25ºC for exactly 20 minutes. After 5 minutes, the 

optical density was measured at 546 nm against blank.  

3.6.3 Bilirubin level Measurement 

The level of bilirubin was determined using the principle provided by (Jendrassik and 

Grof, (1991). 

Principle 
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An alkaline solution of diazotised sulphanilic acid reacts with conjugated (direct) 

bilirubin to produce a blue-colored complex. 

Preparation of Reagents; See Appendix 5 

Procedures 

As prescribed by the bilirubin kit, a drop of R2 was added to 0.2 mL of sample and 1 

mL of R3 for 10 minutes at 20-25ºC. Thereafter, 1 mL of R4 was introduced into the 

reaction mixture which was then incubated at 25ºC for 5-30 minutes. Absorbance 

readings was taken at 578 nm. R1 was added to replace the sample, which served as 

sample blank. 

3.6.4 Lactate dehydrogenase (LDH) Activity Measurement 

The activity of LDH was determined using the principle provided by Weisshar and 

Colleagues, (2014). 

Principle 

Lactate dehydrogenase is an oxidoreductase which catalyses the interconversion of 

lactate and pyruvate. The non-radioactive colorimetric LDH assay is based on the 

reduction of tetrazolium salt MTT in a NADH-coupled enzymatic reaction to a reduced 

form of MTT which exhibits an absorption maximumat 565 nm. The intensity of the 

purple color formed is directly proportional to the enzyme activity. LDH is most often 

measured to evaluate the presence of tissue or cell damage. 

Pyruvate + NADH + H+          LDH                Lactate + NAD+ 

Preparation of Reagents; See Appendix 6 

Procedure 

The sample (0.02 mL) was pipetted into the cuvette after substrate (1.0 mL) and buffer 

was pipetted. At 37ºC, mixture was mixed and incubated. At 340 nm, absorbance were 

measured and recorded for 3 minutes at 1 minute intervals. 

Calculation 
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By multiplying the change in absorbance by 8095, the LDH activity is calculated in 

Unit per litre (U/L).  

 LDH activity (U/L) = 4127 × ∆A340 nm/min ............................... EQU 3.5.4 

 

3.7 BIOCHEMICAL ASSAYS: OXIDATIVE STRESS AND 

INFLAMMATION BIOMARKERS 

3.7.1  Protein Concentration Measurement 

The protein concentrations in mammary, uterine, and ovarian homogenates, were 

determined using the Biuret method (Sánchez, 1951). 

Concept 

The assay relies on the production of a blue compound with a 540 nm optical density. 

When Cu2+ and proteins reacts under alkaline circumstances. Copper sulphate, 

potassium iodide and sodium titrate make up the Biuret reagent. A bovine serum 

albumin (BSA) standard curve is commonly used to calibrate this method.  

BSA Standard Curve Callibration 

0.05-0.5 mg of protein/mL of BSA stock solution was serially diluted in normal saline. 

Each protein (1 mL) standard solution received 4 mL of Biuret reagent which was left 

for 30 minutes at 37ºC. The absorbance was measured at 540 nm , and an absorbance 

graph was generated against BSA concentrations. 

Reagents Preparation; See Appendix 7 

Protein Concentration Measurement in Samples  

Distilled water was used to dilute the homogenates (mammary, uterus, and ovary). This 

was required to decrease the protein sample to Biuret method’s sensitivity range. Biuret 

(1 mL) was introduced to the samples (diluted), and reaction were permitted to stand at 

37ºC for 30 minutes before recording the optical density at 540 nm. To acquire the 

actual concentration of sample’s protein, the concentration of protein in the extrapolated 

samples were multiplied by the dilution factor after calibration with BSA. 
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3.7.2 Determination of Lipid Peroxidation Product 

The TBARS formed during LPO were measured to determine lipid peroxidation 

product, as stated by (Susana et al., 2001).  

Principle 

The interaction between TBA and MDA, an end product of LPO, is the basis for this 

approach. The product turns pink when heated in an acidic pH environment, absorbs 

maximum at 532nm, and may be extracted into organic solvents like butanol. The 

amount of free MDA produced is commonly used to callibrate this test, and the results 

are given in µM/mg protein. 

Preparation of Reagents; See Appendix 8 

Procedure 

Aliquot sample (0.4 mL) was combined with Tris-KCl (1.6 mL ) buffer and 10% TCA 

(0.5 mL). After that, 0.75 % TBA (0.5 mL) was introduced and the mixture was 

ncubated at 80ºC for 45 minutes. After cooling in ice, then the mixture is centrifuged for 

10 minutes at 3000 rpm. The optical density of the clear pink solution was recorded at 

532nm against a H2O blank. The MDA level was estimated using the Todorova et al., 

technique (2005). Using molar extinction coefficient of 1.56 x 105M-1Cm-1, lipid 

peroxidation in units /mg protein or gram tissue was calculated.  

3.7.3 Superoxide Dismutase (SOD) Activity Measurement 

The activity of SOD was determined using the principle provided by Misra and 

Fridovich, (1972). 

Principle 

In SOD assay, superoxide anions are produced by the action of xanthine oxidase. 

Superoxide dismutase catalyzes the dismutation of superoxide anion into H2O2 and O2. 

Superoxide anion acts on WST-1 (tetrazolium salt) to produce a water-soluble formazan 

dye which can be detected by the increase in absorbance at 450 nm. The greater the 

activity of superoxide dismutase in the sample, the less formazan dye is produced. 

Preparation of Reagents; See Appendix 9 

Procedure 
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In a cuvette, sample (50 µL ) was mixed with carbonate buffer (2.5 mL, 0.05M at pH 

10.2) and epinephrine (0.3 mL) via inversion. An absorbance at 480 nm was taken 

over the course of 2.5 minutes. 

Calculation 

Change in optical density per minute = Af - Ai 

          2.5 

Ai = initial optical density 

Af = final optical density 

% Inhibition =        Increase in sample optical density      × 100  ………. EQU 3.6.3 

               Increase in blank optical density  

The amount of superoxide dismutase required to block the oxidation of adrenalin by at 

least 50% is defined as a unit of superoxide dismutase activity.  

3.7.4 Catalase Activity Measurement 

Claiborne et al technique was used to determine catalase activity  (1984). 

Principle 

The reduction of absorbance recorded at 240nm as catalase breaks down hydrogen 

peroxide is the basis for this approach. The extinction coefficient was calculated using 

the method described by Noble and Gibson (1970). 

Preparation of Reagent; See Appendix 10 

Procedure 

In a 1 cm quartz cuvette, sample (50µl) was pipetted into 19 mM hydrogen peroxide 

(2.95 mL ) mixture and inverted to mix. The readings were taken every 5 minutes at 

240nm. .  

3.7.5  Glutathione-S-Transferase (GST) Activity Measurement 
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GST activity was measured using Habig et al technique  (1974). 

Principle 

When using 1-chloro-2,4-dinitrobenzene as the second substrate, glutathione-S-

transferases have relatively high activity. As the substance is conjugated with reduced 

glutathione, its maximum absorption wavelength shifts. The new 340nm wavelength's at 

increased absorption enables for a direct assessment of the enzyme process. 

Reagents preparation; See Appendix 11 

Procedure 

The estimation medium consisted of 30 mL of reduced glutathione (0.1 M) added to 150 

mL of 20 mM of 1-chloro- 2, 4-dinitrobenzene (CDNB), followed by 2.82 mL of 0.1 M 

Phosphate buffer (pH 6.5) and 30 mL of Cytosol/Microsomes. Before the absorbance 

was measured at 340 nm against a blank, the reaction was run for 60 seconds each time. 

The temperature was kept at almost 30ºC. The optical density was recorded. 

3.7.6 Glutathione Peroxidase (GPx) Activity Measurement 

The GPx activity was measured using Rotruck et al technique’s (1973).  

Principle 

Glutathione peroxidase catalyzes the conversion of GSH to GSSG by hydrogen 

peroxide. When GSH and DTNB come together, they generate 5-thio-2-nitrobenzoic 

acid (TNB), which has a spectrophotometric absorbance at 412nm (Anderson et al., 

1985). 

Procedure 

NaN3 (0.1 mL), GSH (0.2 mL), H2O2 (0.1 mL), sample (0.5 mL), and dH2O (0.6 mL) were 

added to 0.5 mL Phosphate buffer. TCA (0.5 mL) was added after 3 minutes of incubation at 

37°C, and the mixture was centrifuged for 5 minutes at 3000 rpm. K2HPO4 (2 mL )and DTNB 

(1 mL) were added to supernatant (1 mL each), and the readings was recorded at 412 nm 

against a blank. 

Reagents preparation; See Appendix 12 
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3.7.7 Determination of Reduced Glutathione (GSH) Level 

Beutler et al technique was used to measured GSH level (1963)  

Principle 

In most cases, GSH contains the majority of cellular non-protein sulfhydryl groups. The 

idea for this technique came from the appearance of a markedly stable (yellow) color 

when sulfhydryl compounds were exposed to 5,5’-dithiobis-(2-nitrobenzoic acid) 

(Ellman's reagent). Ellman's reagent interacts with GSH to yield 2-nitro-5-thiobenzoic 

acid, a chromophoric product with a 412 nm molar absorption. This compound's optical 

density at 412 nm is proportional to the sample's reduced glutathione stage.  

Reagents Preparation; See Appendix 13 

Procedure 

To make 1 in 10 dilutions, the test sample (0.1 mL) was diluted with H2O (0.9 mL). To 

deproteinize the diluted test sample, 4 % sulphosalicyclic acid solution (3 mL 

precipitating solution) was introduced. At 3,000 g, the mixture was centrifuged for 10 

minutes. After that, the supernatant (0.5 mL) was mixed with phosphate buffer (0.1 M; 4 

mL), then Ellman's Reagent (4.5 mL) was added. A blank was made using 0.1 M 

phosphate buffer (4 mL), 0.5 mL of the diluted precipitating solution (adding 3 mL of 

precipitating solution to 2 mL of dH2O), and Ellman's Reagent mixture (4.5 mL). All 

readings were taken at 412 nm within 5 minutes of introducing Ellman's Reagent since 

the color developed is not stable. The absorbance at 412 nm is proportional to reduced 

glutathione, GSH. 

3.7.8 Determination of Total Thiol (TSH) Level 

The total thiol level was assayed for according to the method of Ellman (1951). 

Principle 

The reduced form of glutathione and other protein with sulphydryl are available in 

cellular pro-oxidant and antioxidant system in tissues. This methodis based on the 

development of a relatively stable (yellow) color when Ellman’s (5’,5’-dithiobis-(2-

nitro-benzoic acid) is added to sulphydryl compounds. The chromophoric product 
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resulting from the reaction of Ellman’s reagent with the reduced sulphydryl groups 

which is 2-nitro-5-thiobenzoic acid possess a molar absorption at 412 nm. 

Procedure 

An aliquot of the sample supernatant was added to Ellman’s reagent and read at 

absorbance of 412 nm at 30 minuted incubation time. 

3.7.9 Nitrite (Nitric Oxide) Measurement 

During the metabolism of nitric oxide (NO•), the end product nitrite (NO2-) reacts with 

hypochlorous acid (HOCl) or myeloperoxidase, it rapidly accelerates tyrosine nitration 

by creating nitryl chloride (NO2Cl) and nitrogen dioxide (NO2
•). Myeloperoxidase-

dependent processes convert NO2
- to NO2Cl and NO2

• in activated polymorphonuclear 

neutrophils. NO2 can affect inflammatory processes in vivo through oxidative 

mechanisms such as tyrosine nitration and chlorination. Nitric oxide (NO•) generation, 

the nitrite (NO2
-) concentration of tissues was determined. To quantify the results, the 

Griess reaction was used (Dimitrios Tsikas, 2005). 

Principle 

Tissue nitrite combines with a diazotizing agent like sulfanilamide (SA) to create a 

temporary diazonium salt in acidic environments. This intermediate is then allowed to 

react with N-naphthyl-ethylenediamine (NED), a coupling reagent, to provide a stable 

azo product. Before reacting with nitrite, SA and NED can be combined in an acid 

medium. A high-sensitivity nitrite assay can detect nitrite concentrations as low as 0.5M 

due to the product's vibrant pink-purple color. The nitrite concentration in the sample is 

linearly related to the optical density at 540 nm. 

Preparation of Reagents; See Appendix 14 

Procedure 

The number of nitrite in serum was deduced by incubating a sample (0.5 mL) with 

Griess reagent [0.5 mL; 0.1 % N-(1-naphthyl) ethylenediamine dihydrochloride; 1 

percent sulfanilamide in 5 % phosphoric acid] at 37ºC for 20 minutes after undergoing 

Griess reaction. The OD 550 (absorbance at 550 nm) was measured. The concentration 
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of sodium nitrite was determined by comparing the OD 550 of a reference solution to 

known sodium nitrite concentrations. 

Calibration curve 

Calibrator was created by diluting stock NaNO2 solutions (20 mmol/L) with distilled 

water at various strengths. The dilution of nitrate callibrator with glycine buffer was 

done the same way the samples was diluted. A linear range of nitrate between 0 and 100 

mol/L was plotted to create the calibration curve. 

3.7.10 Determination of Myeloperoxidase Activity (MPO) 

The activity of myeloperoxidase (MPO), a marker of polymorphonuclear leukocyte 

accumulation, was measured using a modified version of Trush's method (1994) 

Principle 

The lysosomal enzyme myeloperoxidase (MPO) is only found in neutrophils and 

monocytes which is found in the azurophilic granules of polymorphonuclear leukocytes 

(PMNs). MPO oxidizes a variety of aromatic compounds with H2O2 produced by 

neutrophils, providing bacterial activity with substrate radicals (Hampton et al., 1998). 

This enzyme can also generate hypochlorous acid, a potent non-radical oxidant (HOCl) 

by oxidizing chloride ions. Neutrophils produces HOCl which is one of the most 

powerful bactericidal chemical. However, excessive generation of free radicals can lead 

to tissue damage and oxidative stress.  

Using o-dianisidine (Sigma-Aldrich) and hydrogen peroxide, MPO activity was 

evaluated spectrophotometrically in this work. According to the following overall 

process, the oxidation of o-dianisidine to an oxidized o-dianisidine is catalyzed by MPO 

(a brown-colored product) in the presence of H2O2 with a minimum absorbance at 470 

nm. 

2H2O2 + o-dianisidine     oxidized o-dianisidine + 4H2O 

Reagents preparation; See Appendix 15 
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 Procedure 

In duplicate, to 7 μL of sample homogenate, an aliquot of of o-dianisidine (200 μL) and 

of diluted H2O2 (50 μL) was added. With an extinction value of 11.3 mM/cm and a 

specific activity of IU/mg protein, one unit of MPO is defined as that which causes a 

0.001 per minute increase in absorbance. The absorbance was taken at 460nm for 3 

minutes 

3.8 Assessment of Urinary Parameters 

Urine Reagent Strips are firm plastic strips onto which several separate reagent areas are 

affixed. The test is for the qualitative and semi-quantitative detection of one or more 

analytes in urine. It can be used in general evaluation of health, and aids in the diagnosis 

and monitoring of metabolic or systemic diseases that affect kidney function, endocrine 

disorders and diseases or disorders of the urinary tract. 

Specimen Collection And Preparation  

A urine specimen was collected in a clean, dry container using metabolic cage over 

night and tested for urobilinogen, albumin, protein, bilirubin, glucose, ascorbic acid, 

ketone, nitrite, creatinine, pH and blood. 

Procedure 

Remove the strip from the closed canister and use as soon as possible. Close tightly the 

canister after removing the strip and completely immerse the reagent areas of the strip in 

fresh, well mixed urine and immediately remove the strip to avoid dissolving the 

reagents in the urine. While removing the strip from the urine, run the edge of the strip 

against the rim of the urine container to remove excess urine. Hold the strip in a 

horizontal position and bring the edge of the strip into contact with an absorbent 

material (e.g. a paper towel) to avoid mixing chemicals from adjacent reagent areas 

and/or soiling hands with urine. Compare the reagent areas to the corresponding color 

blocks on the canister label. Hold the strip close to the color blocks and match carefully.  

3.9 Immunohistochemistry of Inflammatory and Apoptotic Markers 

The immunohistochemical analysis was determined using the principle provided by 

Chakravarthi and colleagues (2010). 
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Principle 

This is centered on the manufacturer's specification of a 1:100 dilution of a primary 

antibody binding to specified antigens. 

Procedure 

Immunohistochemical labeling of formalin-fixed tissue slices from the breast, uterus, 

and ovary was employed to investigate expression of the selected proteins. A secondary 

enzyme-conjugated antibody is then given the antibody-antigen combination. In the 

presence of substrate and chromogen, the enzyme works on the substrate to produce 

colored deposits at the locations of antibody-antigen contact, which were observed using 

a binocular microscope. Positive antigen locations in the cell cytoplasm, cell membrane, 

and nuclei were well-defined in color when compared to controls. Xylene was used to 

deparaffinize tissue slides (twice; 5 minutes each). After that, the tissue slides were 

examined. After that, the tissue slides were washed twice in ethanol at varying 

concentrations for 3 minutes each time (ethanol: 100 % , 95 % and 70 % ). The slides 

were rinsed with PBS for 5 minutes (0.01 M; pH 7.4). The antigens were retrieved by 

heating the slides to 97ºC for 5 minutes in sodium citrate buffer (0.05 M; pH 6.0), then 

cooling them in the retrieval buffer for 20 minutes before being rinsed twice with wash 

buffer for 5 minutes each time. Before incubation, the slides were soaked in 10% BSA 

in PBS (blocking buffer) for 15 minutes at 37ºC in a humidified environment, then 

washed with wash buffer. After that, the primed tissue slides were probed with diluted 

primary antibody and incubated for an hour at room temperature in a temperature 

controlled environment. The biotinylated + streptavidine HRP secondary was diluted 

and applied to the segments on the slides, then incubated for the time specified after the 

slides had been rinsed twice with wash buffer for 5 minutes (polymer-single layer for 30 

minutes). After washing the slides with wash buffer, the slide sections were incubated 

for further 15 minutes with 130 L of diluted Sav-HRP conjugates. For color 

development, the tissue pieces were painted with a freshly made DAB substrate solution 

(130 L) until the appropriate color strength was achieved. The slides were washed three 

times for two minutes each time under running water.. Hematoxylin was used to 

counterstain the nuclei for 20 seconds before rinsing, Dehydrated with 95 %, 95 %, 100 

% and 100 % ethanol for 5 minutes after being rinsed under running water for 10 

minutes. Before being mounted with a cover slip and mounting solution, the slides were 
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xylene-cleared three times. The color of the antibody staining on the tissue slides was 

viewed and photographed using an inverted fluorescence microscope (A Brunel 

Microscope Limited SP-98-FL ) with an attached camera (Canon EOS 1100D, Japan). 

Scoring of slides: 

Depending on the antigenic sites, brown color cells in the cytoplasm, cell membrane, or 

nuclei were considered positive. Hematoxylin staining was used to score the cells. There 

is no staining if there is less than 5% staining, weak staining if there is 6-24% staining 

(light yellow), moderate staining if there is 25-49 % staining (yellow-brown), strong 

staining if there is 50-74 % staining (brown), and very strong staining if there is 75-00 

% staining (dark brown). 

3.10 DNA Fragmentation Assay 

The DPA (diphenylamine) colorimetric approach is used to identify cell death in resting 

cells or other cell types when DNA labeling is either impossible or difficult. Procedure 

for DNA fragmentation was carried out in line with the manufacturer's instructions, 

Waterborg and Matthew, (1956) and Arzi et al (2018). 

Principle 

A Ca++/Mg++-dependent endonuclease cleaves DNA in the linker region between 

nucleosome cores, resulting in the production of a series of multiplets of a 180 bp 

subunit within the nucleus. This approach is based on the idea that centrifugal 

sedimentation can separate substantially fragmented double-stranded DNA from 

chromosomic DNA. Following cell lysis and nuclear DNA release, two fractions 

(corresponding to intact and fragmented DNA, respectively) are centrifuged; DNA is 

precipitated, hydrolyzed, and colorimetrically measured after staining with deoxyribose-

binding diphenylamine (DPA). 

Reagents preparation; See Appendix 16 

Procedure 

To extract cell lysate, the mammary tissue was mechanically homogenized in 400 µL 

hypotonic lysis buffer (10 mM-1 mM EDTA, pH 7.5, 0.2 % (v/v) Triton-X-100). The 

cell lysate was centrifuged for 15 minutes at 13.800 g. The supernatant, which contained 
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small DNA fragments, was immediately separated. The diphenylamine (DPA) assay was 

performed on the supernatant as well as a pellet containing significant fragments of 

DNA.  

Both the supernatant and the pellet were utilized in the DPA test after acid extraction of 

DNA. Large bits of DNA and cell debris were found in the pellet, which was 

resuspended in 400 L hypotonic lysis buffer. Both the remaining half of the supernatant 

and the re-suspended pellet received 400 µL of 10% trichloroacetic acid (TCA). The 

tubes were centrifuged for 10 minutes at 2000 rpm. The precipitate was resuspended in 

400 µL of 5% TCA solution. For 30 minutes, the tubes were incubated at 80ºC. The 

isolated DNA supernatant was allowed to cool at room temperature. One volume of 

extracted DNA was mixed with two volumes of color reagent (freshly produced DPA 

reagent). The samples were kept at 40°C for 48 hours to generate a blue tint. A 

spectrophotometer was used to colorimetrically measure the blue color at 578/600 nm. 

The following formula was used to calculate the percentage of DNA fragmentation: 

% DNA fragmentation = O.D. of supernatant / (O.D. of supernatant + O.D. of pellet) × 

100 

3.11 Assessment of Chemopreventive Effects of Methanol Extract of C. 

portoricensis on Serum Parameters, Antioxidants Status and Hormone Receptors 

in N-nitroso-N-methylurea-Administered Rats. 

Procedure 

Sixty-four female Wistar rats (30-40g) were divided into eight different groups at 

random (n=8): Two weeks prior to the experiment, the animals were accultured. Normal 

saline was given to Group 1 as a control, while MNU (50mg/kg) was given to Group 2. 

MNU (50mg/kg) and CP (100mg/kg) were given to Group 3, MNU (50mg/kg) and CP 

(200mg/kg) to Group 4, MNU (50mg/kg) and CP (300mg/kg) to Group 5, and 

300mg/kg CP solely to Group 6. MNU (50 mg/kg) and vincasar (0.5 mg/kg) were given 

to group 7, while vincasar only was given to group 8. At ages 7, 10, and 13, the MNU 

was administered intraperitoneally in a single dose for a period of 10 weeks. For the 

duration of the experiment, three times a week, CP was administered orally, and twice a 

week, vincasar was administered intraperitoneally for the period of 10 weeks. Blood was 
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collected, mammary glands, uterus, and ovary tissues were retrieved for biochemical 

and immunohistochemical investigations. 

3.12 Assessment of Antioxidative and Radical Scavenging Activities of C. 

portoricensis 

Procedure 

The DPPH was dissolved in methanol and filled up to 100 mL. Different concentrations 

of extract were dissolved in 4 mL of distilled water into 6 different test tubes. 1 mL each 

from a test tube was dispensed into three separate test tubes (triplicates). To each of the 

triplicate, DPPH (1 mL each) was added to the test tube and allowed to stand at 37ºC for 

30 mins before reading at 517 nm. Also, ABTS and potassium per sulphate was weighed 

and dissolved in distilled water. Both solution (ABTS and potassium per sulphate) was 

mixed together in the dark and allowed to stand for 12-16 hours before use. To make a 

working standard solution, 2 mL of ABTS working solution was diluted with 70 mL of 

acetate buffer after 12 hours. 500 μL of ABTS mixture was added into micro cuvette 

and the extracts was added at varying concentrations starting from 50 μL, 100 μL, 200 

μL, 300 μL and 400 μL respectively. 

3.13 Assessment of Chemopreventive Effects of Chloroform Fraction of C. 

portoricensis (CCP) on Biochemical Parameters and Hormonal profile in N-nitroso-

N-methylurea and Benzo[a]pyerene-induced rats. 

Procedure 

Fifty-six Wistar rats (female; 30-40g) were splitted into seven groups (n=8) according to 

their weights in the following manner; rats were acculturated for two weeks before the 

experiment began. Corn oil (vehincle) was given to Group 1, whereas MNU (50mg/kg) 

and BP (50mg/kg) were given to Group 2. MNU (50mg/kg), BP (50mg/kg), and CCP 

(50mg/kg) were given to Group 3, MNU (50mg/kg), BP (50mg/kg), and CCP 

(100mg/kg) were given to Group 4, CCP only (100mg/kg) was given to Group 5, MNU 

(50mg/kg), BP (50mg/kg), and vincasar (0.5mg/kg) were given to Group 6 while Group 

7 received vincasar only. MNU was injected via-intraperitoneal in a single dose at age 7, 

10 and 13 weeks for the period pf 10 weeks. CCP was administered orally thrice weekly 

while vincasar was injected via-intraperitoneal twice weekly for the period of 10 weeks. 

Cervical dislocation was used to sacrifice the animals, and blood was taken. Mammary 
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glands, uterus and ovary tissues were obtained for biochemical and 

immunohistochemical analyses. 

3.14 Assessment of Antiproliferative, Antioxidative, and Apoptotic Effects of   

Chloroform Fraction of C. portoricensis in MCF-7 cells.  

Procedure 

Cells viability was determined using (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl 

tetrazolium bromide) MTT assay. Dulbecco's modified Eagle medium (DMEM) was 

used to grow the MCF-7 cells. Cells were cultured after introducing into 96-well plates 

(density of 5×103 cells per well). Following 24-hour incubation period, the cells were 

given various doses of chloroform fraction of CP (5, 25, 50, and 100 μg/mL) for 72 

hours. For 4 hours, the MTT (thiazolyl blue tetrazolium bromide), 7% FCS, and 

penicillin/streptomycin in PBS were introduced and incubated. The dye was solubilized 

with DMSO after incubation. The concentration of MTT-formazan product dissolved in 

DMSO was determined using a microplate reader set to 550 nm. 

 

3.14.1 Assessment of Biochemecal parameters on MCF-7 cell lysates 

MCF-7 cells were seeded in 96-well plates to study the effect of chloroform fraction of 

CP on biochemical parameters. Following 24 hours incubation, the cells were given 49.3 

μg/mL (IC50) of CP for another 24 hours. The cells were rinsed three times with wash 

buffer, thereafter, lytic buffer was added to lyse the cells, incubated for 30 minutes and 

placed in a centrifuge tube. To separate the supernantant from the cell debris, the 

obtained cell lysates were centrifuged for 10 minutes at 10,000 x g. The cell lysate 

supernatant was used to measure biochemical parameters and apoptotic markers. 

 

3.15 Assessment of Curative Effects of Chloroform Fraction of C. portoricensis 

(CCP) on N-nitroso-N-methylurea and Benzo[a]pyerene-induced mammary toxicity 

in rats. 

Procedure 

A total of thirty-two female rats were divided into four groups, each with eight rats. 

Prior to the experiment, the animals were given a fourteen-days acclimatization period. 
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Group 1 received normal saline (vehincle), group 2 received MNU (50mg/kg) and BP 

(50mg/kg), group 3 received MNU (50mg/kg), BP(50mg/kg) and given CCP(100mg/kg) 

while group 4 received MNU (50mg/kg), BP(50mg/kg) and vincasar (0.5mg/kg) 

respectively. The rats were given a single dosage of MNU and BP (50 mg/kg) 

intraperitoneally at ages 7, 10, and 13 weeks (three weeks interval) for a period of 10 

weeks. The CCP (orally) and vincasar (intraperitoneally) were administered for another 

period of two weeks respectively. Animals were sacrificed through cervical dislocation, 

blood was collected, neck and mammary tissues were obtained for biochemical and 

immunohistochemical analyses. 

3.16 Statistical Analysis 

Values (mean±SDev) are based on eight rats per group. The data in this study were 

analyzed using One-Way Analysis of Variance, and statistical significance was 

determined at pless than .05. 
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CHAPTER FOUR 

RESULTS 

4.1 Chemopreventive effect of methanol extract of C. portoricensis on serum 

parameters, antioxidants status, and hormone receptors in N-nitroso-N-methylurea 

administered rats. 

Results from table 4.1 and table 4.2 depict that administration of MNU caused reduction 

in body weight gained by 21% relative to vehincle. On the contrary, the mammary 

gland's weight and organo-somatic weight increased by 67% and 52%, respectively, in 

the MNU-treated groups (pless than .05). Similarly, MNU induced a drastic (pless than 

.05) increased in ovarian weight without any noticeable effect on uterine weight. The 

ovarian organo-somatic weights rose by 15.4%, but the uterine organo-somatic weights 

differed slightly (p>0.05). Co-treatment with CP specifically at 200mg/kg and 

300mg/kg restored the body weight gained, mammary gland and uterus organo-somatic 

weight drastically (pless than .05). 
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Table 4.1: Weight changes in rats given N-nitroso-N-methylurea and methanol 

extract of C. portoricensis 

       WEIGHT (g)               MAMMARY TISSUE

    

 Original            Terminal           Body mass   Body mass (g)   Organ-body    

                     Body mass (g)    Body mass (g)   Gained (g)                         massa                             

VEHINCLE 52.63±3.93 157.25±9.97 104±7.14 0.45±0.12 0.33±0  

MNU  62.88±3.23 145.15±2.84 82.27±4.51 0.75±0.08* 0.50±0.08 

MNU+CP 1 63.63±5.40 154.25±3.23 89.75±1.20 0.91±0.01* 0.61±0.05* 

MNU+CP 2 61.13±3.14 160.55±1.34 99.42±7.71 0.67±0.19** 0.43±0.09** 

MNU+CP 3 67.38±5.73 146.35±7.28 78.97±1.91 0.55±0.06** 0.38±0.02** 

CP 3 ONLY  52.25±6.39 139.10±2.95 86.65±3.46 0.69±0.16 0.50±0.11 

MNU + VIN 68.63±3.70 125.6±1.70 57.10±8.06 0.89±0.13 0.68±0.15 

VIN ONLY 77.00±4.63 134.25±1.10 57.25±9.16 0.65±0.20 0.56±0.19

  

MNU= N-nitroso-N-methylurea; CP= C. portoricensis; VIN= Vincasar; a= % body 

weight. CP 1 =100 mg/kg,  CP 2= 200 mg/kg and  CP 3= 300 mg/kg.  

* = p less than .05 in contrast to vehincle. ** = p less than .05 in contrast to untreated 

group. Values (mean±SDev) are based on 5-8 rats per group. 
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TABLE 4.2: Organ weight changes of N-nitroso-N-methylurea-administered rats 

given methanol extract of C. portoricensis and Vincasar 

 

                                               UTERUS   OVARY 

            Body mass(g)    Organ- body        Body mass (g)     Organ- body   

                             massa                   massa  

VEHINCLE    0.11±0.04 0.08±0.01  0.17±0.06 0.13±0.00 

MNU    0.11±0.04 0.06±0.01  0.23±0.02* 0.15±0.01* 

MNU+CP 1  0.09±0.01 0.06±0.00  0.16±0.02** 0.11±0.02** 

MNU+CP 2  0.14±0.02 0.08±0.00  0.17±0.05** 0.11±0.02** 

MNU+CP 3   0.14±0.01 0.09±0.00  0.15±0.01** 0.10±0.00** 

CP 3 ONLY    0.10±0.04 0.06±0.01  0.14±0.04 0.10±0.03 

MNU + VIN   0.07±0.01 0.05±0.00  0.14±0.01 0.11±0.00 

VIN ONLY   0.10±0.02 0.07±0.00  0.16±0.04 0.14±0.06 

   

MNU= N-nitroso-N-methylurea; CP= C. portoricensis; VIN= Vincasar. CP 1 =100 

mg/kg,  CP 2= 200 mg/kg and  CP 3= 300 mg/kg. * = p less than .05 in contrast to 

vehincle. ** = p less than .05 in contrast to untreated group. Values (mean±SDev) are 

based on 5-8 rats per group. 
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Activity of aspartate aminotransferases (AST) and total bilirubin (T-BIL) level was 

drastically (pless than .05) elevated in MNU-administered rats while alanine 

aminotransferase (ALT) activity was slightly elevated in MNU-exposed group relative 

to vehincle. Serum lactate dehydrogenase activity and nitric oxide level increased 

significantly in MNU-treated groups. In addition, a slight increase in serum 

malondialdehyde (LPO) level was observed in rats exposed to MNU. However, co-

administration with CP at all doses tested significantly mitigated MNU-induced 

alterations across CP-treated groups. 
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Figure 4.1: Effect of methanol extract of C. portoricensis (CP) in Wistar rats given 

N-nitroso-N-methylurea (MNU) on serum alanine aminotransferase activities 

(ALT). MNU= N-nitroso-N-methylurea; CP= C. portoricensis; VIN= Vincasar. CP 1 

=100 mg/kg,  CP 2= 200 mg/kg and  CP 3= 300 mg/kg. Values (mean±SDev) are based 

on 5-8 rats per group. 
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Figure 4.2: Effect of methanol extract of C. portoricensis (CP) in Wistar rats given 

N-nitroso-N-methylurea (MNU) on serum aspartate aminotransferase activities 

(AST). MNU= N-nitroso-N-methylurea; CP= C. portoricensis; VIN= Vincasar. CP 1 

=100 mg/kg,  CP 2= 200 mg/kg and  CP 3= 300 mg/kg. * = p less than .05 in contrast to 

vehincle. ** = p less than .05 in contrast to untreated group. Values (mean±SDev) are 

based on 5-8 rats per group. 
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Figure 4.3: Effect of methanol extract of C. portoricensis (CP) in Wistar rats given 

N-nitroso-N-methylurea (MNU) on serum total bilirubin (T-BIL) levels. MNU= N-

nitroso-N-methylurea; CP= C. portoricensis; VIN= Vincasar. CP 1 =100 mg/kg,  CP 2= 

200 mg/kg and  CP 3= 300 mg/kg. * = p less than .05 in contrast to vehincle. ** = p less 

than .05 in contrast to untreated group. Values (mean±SDev) are based on 5-8 rats per 

group. 
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Figure 4.4: Effect of methanol extract of C. portoricensis (CP) in Wistar rats given 

N-nitroso-N-methylurea (MNU) on serum nitric oxide (NO) levels. MNU= N-nitroso-

N-methylurea; CP= C. portoricensis; VIN= Vincasar. CP 1 =100 mg/kg,  CP 2= 200 

mg/kg and  CP 3= 300 mg/kg. * = p less than .05 in contrast to vehincle. ** = p less than 

.05 in contrast to untreated group. Values (mean±SDev) are based on 5-8 rats per group. 
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Figure 4.5: Effect of methanol extract of C. portoricensis (CP) in Wistar rats given 

N-nitroso-N-methylurea (MNU) on serum malondialdehyde (LPO) levels. MNU= N-

nitroso-N-methylurea; CP= C. portoricensis; VIN= Vincasar. CP 1 =100 mg/kg,  CP 2= 

200 mg/kg and  CP 3= 300 mg/kg. Values (mean±SDev) are based on 5-8 rats per 

group. 
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MNU and BP administration significantly increased lactate dehydrohenase activity 

when compared to vehincle group. In addition, DNA fragmentation levels slightly 

decreased in MNU and BP-treated rats relative to vehincle. However, co-treatment with 

CP and VIN drastically decreased lactate dehydrogenase activities across the treated 

groups while CP and VIN treatment slightly increased DNA fragmentation levels 
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Figure 4.6: Effect of methanol extract of C. portoricensis (CP) in Wistar rats given 

N-nitroso-N-methylurea (MNU) on serum lactate dehydrogenase (LDH) activities.  

MNU= N-nitroso-N-methylurea; CP= C. portoricensis; VIN= Vincasar. CP 1 =100 

mg/kg,  CP 2= 200 mg/kg and  CP 3= 300 mg/kg. * = p less than .05 in contrast to 

vehincle. ** = p less than .05 in contrast to untreated group. Values (mean±SDev) are 

based on 5-8 rats per group. 
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Figure 4.7: Effect of methanol extract of C.portoricensis (CP) in Wistar rats given 

N-nitroso-N-methylurea (MNU) on DNA fragmentation. MNU= N-nitroso-N-

methylurea; CP= C. portoricensis; VIN= Vincasar. CP 1 =100 mg/kg,  CP 2= 200 

mg/kg and  CP 3= 300 mg/kg. Values (mean±SDev) are based on 5-8 rats per group. 
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Mammary, uterine, and ovarian GPx and GST activities were drastically decreased in 

MNU-treated rats when compared to vehincle. Precisely, mammary GPx and GST 

decreased by 32% and 6.02%, ovarian GPx and GST decreased by 38.7% and 9.64% 

while uterine GPx and GST decreased by 23.34% and 9.75% respectively. Co-

treatment with CP significantly elevated GPx and GST activities. 
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Figure 4.8: Effect of methanol extract of C. portoricensis (CP) in Wistar rats given 

N-nitroso-N-methylurea (MNU) on  mammary Glutathione-S-transferase (GST) 

activities. MNU= N-nitroso-N-methylurea; CP= C. portoricensis; VIN= Vincasar. CP 1 

=100 mg/kg,  CP 2= 200 mg/kg and  CP 3= 300 mg/kg. * = p less than .05 in contrast to 

vehincle. ** = p less than .05 in contrast to untreated group. Values (mean±SDev) are 

based on 5-8 rats per group. 
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Figure 4.9: Effect of methanol extract of C. portoricensis (CP) in Wistar rats given 

N-nitroso-N-methylurea (MNU) on  uterine Glutathione-S-transferase (GST) 

activities.  MNU= N-nitroso-N-methylurea; CP= C. portoricensis; VIN= Vincasar. CP 1 

=100 mg/kg,  CP 2= 200 mg/kg and  CP 3= 300 mg/kg. * = p less than .05 in contrast to 

vehincle. ** = p less than .05 in contrast to untreated group. Values (mean±SDev) are 

based on 5-8 rats per group. 
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Figure 4.10: Effect of methanol extract of C. portoricensis (CP) in Wistar rats given 

N-nitroso-N-methylurea (MNU) on ovarian Glutathione-S-transferase (GST) 

activities. MNU= N-nitroso-N-methylurea; CP= C. portoricensis; VIN= Vincasar. CP 1 

=100 mg/kg,  CP 2= 200 mg/kg and  CP 3= 300 mg/kg. * = p less than .05 in contrast to 

vehincle. ** = p less than .05 in contrast to untreated group. Values (mean±SDev) are 

based on 5-8 rats per group. 
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Figure 4.11: Effect of methanol extract of C. portoricensis (CP) in Wistar rats given 

N-nitroso-N-methylurea (MNU) on mammary glutathione peroxidase (GPx) 

activities. MNU= N-nitroso-N-methylurea; CP= C. portoricensis; VIN= Vincasar. CP 1 

=100 mg/kg,  CP 2= 200 mg/kg and  CP 3= 300 mg/kg. Values (mean±SDev) are based 

on 5-8 rats per group. 
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Figure 4.12: Effect of methanol extract of C. portoricensis (CP) in Wistar rats given 

N-nitroso-N-methylurea (MNU) on uterine glutathione peroxidase (GPx) activities. 

MNU= N-nitroso-N-methylurea; CP= C. portoricensis; VIN= Vincasar. CP 1 =100 

mg/kg,  CP 2= 200 mg/kg and  CP 3= 300 mg/kg. * = p less than .05 in contrast to 

vehincle. ** = p less than .05 in contrast to untreated group. Values (mean±SDev) are 

based on 5-8 rats per group. 
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Figure 4.13: Effect of methanol extract of C. portoricensis (CP) in Wistar rats given 

N-nitroso-N-methylurea (MNU) on ovarian glutathione peroxidase (GPx) activities. 

MNU= N-nitroso-N-methylurea; CP= C. portoricensis; VIN= Vincasar. CP 1 =100 

mg/kg,  CP 2= 200 mg/kg and  CP 3= 300 mg/kg. Values (mean±SDev) are based on 5-

8 rats per group. 
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Activities of catalase (CAT) and superoxide dismutase (SOD) were depleted in the 

mammary, uterine and ovarian tissues of MNU-exposed groups. Co-administration with 

CP restored the antioxidant enzymes activities when compared to MNU-treated groups. 
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Figure 4.14: Effect of methanol extract of C. portoricensis (CP) in Wistar rats given 

N-nitroso-N-methylurea (MNU) on mammary Catalase (CAT) activities. MNU= N-

nitroso-N-methylurea; CP= C. portoricensis; VIN= Vincasar. CP 1 =100 mg/kg,  CP 2= 

200 mg/kg and  CP 3= 300 mg/kg. * = p less than .05 in contrast to vehincle. ** = p less 

than .05 in contrast to untreated group. Values (mean±SDev) are based on 5-8 rats per 

group. 
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Figure 4.15: Effect of methanol extract of C. portoricensis (CP) in Wistar rats given 

N-nitroso-N-methylurea (MNU) on uterine Catalase (CAT) activities. MNU= N-

nitroso-N-methylurea; CP= C. portoricensis; VIN= Vincasar. CP 1 =100 mg/kg,  CP 2= 

200 mg/kg and  CP 3= 300 mg/kg. * = p less than .05 in contrast to vehincle. ** = p less 

than .05 in contrast to untreated group. Values (mean±SDev) are based on 5-8 rats per 

group. 
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Figure 4.16: Effect of methanol extract of C. portoricensis (CP) in Wistar rats given 

N-nitroso-N-methylurea (MNU) on ovarian Catalase (CAT) activities. MNU= N-

nitroso-N-methylurea; CP= C. portoricensis; VIN= Vincasar. CP 1 =100 mg/kg,  CP 2= 

200 mg/kg and  CP 3= 300 mg/kg. Values (mean±SDev) are based on 5-8 rats per 

group. 
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Figure 4.17: Effect of methanol extract of C. portoricensis (CP) in Wistar rats given 

N-nitroso-N-methylurea (MNU) on mammary Superoxide-dismutase (SOD) 

activities. MNU= N-nitroso-N-methylurea; CP= C. portoricensis; VIN= Vincasar. CP 1 

=100 mg/kg,  CP 2= 200 mg/kg and  CP 3= 300 mg/kg. * = p less than .05 in contrast to 

vehincle. ** = p less than .05 in contrast to untreated group. Values (mean±SDev) are 

based on 5-8 rats per group. 
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Figure 4.18: Effect of methanol extract of C. portoricensis (CP) in Wistar rats given 

N-nitroso-N-methylurea (MNU) on uterine Superoxide-dismutase (SOD) activities. 

MNU= N-nitroso-N-methylurea; CP= C. portoricensis; VIN= Vincasar. CP 1 =100 

mg/kg,  CP 2= 200 mg/kg and  CP 3= 300 mg/kg. * = p less than .05 in contrast to 

vehincle. ** = p less than .05 in contrast to untreated group. Values (mean±SDev) are 

based on 5-8 rats per group. 
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Figure 4.19: Effect of methanol extract of C. portoricensis (CP) in Wistar rats given 

N-nitroso-N-methylurea (MNU) on ovarian Superoxide-dismutase (SOD) activities. 

MNU= N-nitroso-N-methylurea; CP= C. portoricensis; VIN= Vincasar. CP 1 =100 

mg/kg,  CP 2= 200 mg/kg and  CP 3= 300 mg/kg. Values (mean±SDev) are based on 5-

8 rats per group. 
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Administration of MNU caused drastic reduction in mammary, uterine, and ovarian 

GSH and TSH levels while treatment with CP across treated groups significantly 

attenuated GSH level in a dose-dependent way. In addition, there was no drastic 

difference in TSH level following co-treatment with CP. 
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Figure 4.20: Effect of methanol extract of C. portoricensis (CP) in Wistar rats given 

N-nitroso-N-methylurea (MNU) on  mammary reduced glutathione (GSH) levels. 

MNU= N-nitroso-N-methylurea; CP= C. portoricensis; VIN= Vincasar. CP 1 =100 

mg/kg,  CP 2= 200 mg/kg and  CP 3= 300 mg/kg. * = p less than .05 in contrast to 

vehincle. ** = p less than .05 in contrast to untreated group. Values (mean±SDev) are 

based on 5-8 rats per group. 
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Figure 4.21: Effect of methanol extract of C. portoricensis (CP) in Wistar rats given 

N-nitroso-N-methylurea (MNU) on uterine reduced glutathione (GSH) levels. 

MNU= N-nitroso-N-methylurea; CP= C. portoricensis; VIN= Vincasar. CP 1 =100 

mg/kg,  CP 2= 200 mg/kg and  CP 3= 300 mg/kg. * = p less than .05 in contrast to 

vehincle. ** = p less than .05 in contrast to untreated group. Values (mean±SDev) are 

based on 5-8 rats per group. 
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Figure 4.22: Effect of methanol extract of C. portoricensis (CP) in Wistar rats given 

N-nitroso-N-methylurea (MNU) on ovarian reduced glutathione (GSH) levels. 

MNU= N-nitroso-N-methylurea; CP= C. portoricensis; VIN= Vincasar. CP 1 =100 

mg/kg,  CP 2= 200 mg/kg and  CP 3= 300 mg/kg. * = p less than .05 in contrast to 

vehincle. ** = p less than .05 in contrast to untreated group. Values (mean±SDev) are 

based on 5-8 rats per group. 
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Figure 4.23: Effect of methanol extract of C. portoricensis (CP) in Wistar rats given 

N-nitroso-N-methylurea (MNU) on mammary total sulphydryl (TSH) levels. MNU= 

N-nitroso-N-methylurea; CP= C. portoricensis; VIN= Vincasar. CP 1 =100 mg/kg,  CP 

2= 200 mg/kg and  CP 3= 300 mg/kg* = p less than .05 in contrast to vehincle. ** = p 

less than .05 in contrast to untreated group. Values (mean±SDev) are based on 5-8 rats 

per group. 
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Figure 4.24: Effect of methanol extract of C. portoricensis (CP) in Wistar rats given 

N-nitroso-N-methylurea (MNU) on uterine total sulphydryl (TSH) levels.  MNU= N-

nitroso-N-methylurea; CP= C. portoricensis; VIN= Vincasar. CP 1 =100 mg/kg,  CP 2= 

200 mg/kg and  CP 3= 300 mg/kg. * = p less than .05 in contrast to vehincle. ** = p less 

than .05 in contrast to untreated group. Values (mean±SDev) are based on 5-8 rats per 

group. 
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Figure 4.25: Effect of methanol extract of C. portoricensis (CP) in Wistar rats given 

N-nitroso-N-methylurea (MNU) on ovarian total sulphydryl (TSH) levels. MNU= N-

nitroso-N-methylurea; CP= C. portoricensis; VIN= Vincasar. CP 1 =100 mg/kg,  CP 2= 

200 mg/kg and  CP 3= 300 mg/kg. Values (mean±SDev) are based on 5-8 rats per 

group. 
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Co-administration of CP slightly decreased NO levels in mammary by 1.03%, 1.14% 

and 1.17%; ovarian by 3.36%, 2.64%, and 1.38% and uterine by 6.6%, 3.05% and 1.3% 

in a dose-dependent manner at 100mg/kg, 200mg/kg and 300mg/kg respectively. Also, 

CP reduced MPO activities both in uterine and ovarian tissues. Correspondingly, CP 

shows a dose-dependent inhibition of MPO activity notably in the uterus. 
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Figure 4.26: Effect of methanol extract of C. portoricensis (CP) in Wistar rats given 

N-nitroso-N-methylurea (MNU) on mammary Nitric oxide (NO) levels. MNU= N-

nitroso-N-methylurea; CP= C. portoricensis; VIN= Vincasar. CP 1 =100 mg/kg,  CP 2= 

200 mg/kg and  CP 3= 300 mg/kg. Values (mean±SDev) are based on 5-8 rats per 

group. 
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Figure 4.27: Effect of methanol extract of C. portoricensis (CP) in Wistar rats given 

N-nitroso-N-methylurea (MNU) on uterine Nitric oxide (NO) levels. MNU= N-

nitroso-N-methylurea; CP= C. portoricensis; VIN= Vincasar. CP 1 =100 mg/kg,  CP 2= 

200 mg/kg and  CP 3= 300 mg/kg. Values (mean±SDev) are based on 5-8 rats per 

group. 
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Figure 4.28: Effect of methanol extract of C. portoricensis (CP) in Wistar rats given 

N-nitroso-N-methylurea (MNU) on ovarian Nitric oxide (NO) levels. MNU= N-

nitroso-N-methylurea; CP= C. portoricensis; VIN= Vincasar. CP 1 =100 mg/kg,  CP 2= 

200 mg/kg and  CP 3= 300 mg/kg. Values (mean±SDev) are based on 5-8 rats per 

group. 
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Figure 4.29: Effect of methanol extract of C. portoricensis (CP) in Wistar rats given 

N-nitroso-N-methylurea (MNU) on mammary Myeloperoxidase (MPO) activities. 

MNU= N-nitroso-N-methylurea; CP= C. portoricensis; VIN= Vincasar. CP 1 =100 

mg/kg,  CP 2= 200 mg/kg and  CP 3= 300 mg/kg. * = p less than .05 in contrast to 

vehincle. ** = p less than .05 in contrast to untreated group. Values (mean±SDev) are 

based on 5-8 rats per group. 
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Figure 4.30: Effect of methanol extract of C. portoricensis (CP) in Wistar rats given 

N-nitroso-N-methylurea (MNU) on uterine Myeloperoxidase (MPO) activities. 

MNU= N-nitroso-N-methylurea; CP= C. portoricensis; VIN= Vincasar. CP 1 =100 

mg/kg,  CP 2= 200 mg/kg and  CP 3= 300 mg/kg. * = p less than .05 in contrast to 

vehincle. ** = p less than .05 in contrast to untreated group. Values (mean±SDev) are 

based on 5-8 rats per group. 
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Figure 4.31: Effect of methanol extract of C. portoricensis (CP) in Wistar rats given 

N-nitroso-N-methylurea (MNU) on ovarian Myeloperoxidase (MPO) activities. 

MNU= N-nitroso-N-methylurea; CP= C. portoricensis; VIN= Vincasar. CP 1 =100 

mg/kg,  CP 2= 200 mg/kg and  CP 3= 300 mg/kg. ** = p less than .05 in contrast to 

untreated group. Values (mean±SDev) are based on 5-8 rats per group. 
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Mammary, uterine and ovarian LPO levels were elevated in MNU treated rats by 16.8%, 

17.9% and 167%, respectively relative to vehincles. The LPO levels in these tissues 

decreased drastically (pless than .05) following CP treatment (Figure 4.32- figure 4.34). 
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Figure 4.32: Effect of methanol extract of C. portoricensis (CP) in Wistar rats given 

N-nitroso-N-methylurea (MNU) on mammary Malondialdehyde (LPO) levels. 

MNU= N-nitroso-N-methylurea; CP= C. portoricensis; VIN= Vincasar. CP 1 =100 

mg/kg,  CP 2= 200 mg/kg and  CP 3= 300 mg/kg. * = p less than .05 in contrast to 

untreated group. Values (mean±SDev) are based on 5-8 rats per group. 
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Figure 4.33: Effect of methanol extract of C. portoricensis (CP) in Wistar rats given 

N-nitroso-N-methylurea (MNU) on uterine Malondialdehyde (LPO) levels. MNU= 

N-nitroso-N-methylurea; CP= C. portoricensis; VIN= Vincasar. CP 1 =100 mg/kg,  CP 

2= 200 mg/kg and  CP 3= 300 mg/kg. ** = p less than .05 in contrast to untreated group. 

Values (mean±SDev) are based on 5-8 rats per group. 
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Figure 4.34: Effect of methanol extract of C. portoricensis (CP) in Wistar rats given 

N-nitroso-N-methylurea (MNU) on ovarian Malondialdehyde (LPO) levels. MNU= 

N-nitroso-N-methylurea; CP= C. portoricensis; VIN= Vincasar. CP 1 =100 mg/kg,  CP 

2= 200 mg/kg and  CP 3= 300 mg/kg. * = p less than .05 in contrast to vehincle. ** = p 

less than .05 in contrast to untreated group. Values (mean±SDev) are based on 5-8 rats 

per group. 
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Expression of ER+, PR+ and EGFR-2 was presented in figures 4.35, 4.36 and 4.37. 

MNU-treated rats exhibit elevated ER+, PR+, and EGFR-2 activities, whereas treatment 

with CP at all doses markedly reduced (pless than .05) activities of ER+, PR+ and EGFR-

2 across the CP treated groups. 
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Figure 4.35: Activity of estrogen receptor (ER) in N-nitroso-N-methylurea (MNU)-

administered rats given methanol extract of C. portoricensis (CP). MNU= N-nitroso-

N-methylurea CP= C. portoricensis; VIN= Vincasar. CP 1 =100 mg/kg,  CP 2= 200 

mg/kg and  CP 3= 300 mg/kg. The black arrows showing the expression of estrogen 

receptors 

* = p less than .05 in contrast to untreated group. Values (mean±SDev) are based on 5-8 

rats per group. 
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 CP 3 only  MNU + VIN  VIN only 

  

 



101 
 

 

 

 

 

 

 

Figure 4.36: Activity of progesterone receptor (PR) in N-nitroso-N-methylurea 

(MNU)-administered rats given methanol extract of C. portoricensis (CP). MNU= 

N-nitroso-N-methylurea; CP= C. portoricensis; VIN= Vincasar. CP 1 =100 mg/kg,  CP 

2= 200 mg/kg and  CP 3= 300 mg/kg. The black arrows showing the expression of 

progesterone receptors. * = p less than .05 in contrast to untreated group. Values 

(mean±SDev) are based on 8 rats per group. 
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Figure 4.37: Activiy of epidermal growth factor receptor-2 (EGFR-2) in N-nitroso-

N-methylurea (MNU)-administered rats given methanol extract of C. portoricensis 

(CP). MNU= N-nitroso-N-methylurea; CP= C. portoricensis; VIN= Vincasar. CP 1 

=100 mg/kg,  CP 2= 200 mg/kg and  CP 3= 300 mg/kg. The black arrows showing the 

expression of epidermal growth factor receptors. * = pless than .05 in contrast to 

untreated group. Values (mean±SDev) are based on 8 rats per group. 
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The cyto-architecture of mammary gland appeared normal showing normal stroma and 

mammary adipose tissue while MNU-exposed group revealed increase in periductal 

fibrous tissues along with benign fibroid adenoma (figure 4.38a). Also, the uterine and 

ovarian tissues appeared normal showing normal uterine endometrial gland and ovarian 

theca cells layers while MNU-administered groups revealed inflamed uterine stroma 

cells as well as ovarian stroma with fibrosis (figure 4.38a and figure 4.38b). However 

co-treatment with CP at all doses attenuated MNU-induced cyto-architecture alterations 

across the treated groups. Histological analysis of the uterus and ovary revealed that the 

high dose of CP, specifically 300mg/kg, caused substantial alterations similar to the 

vehincle group while CP at low dose (100mg/kg) showed mild changes in both uterine 

and ovarian tissues. 
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Figure 4.38a: Histopathological alteration of mammary tissues in rats given N-

nitroso-N-methylurea and methanol extract of C. portoricensis (M X 400) 
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Figure 4.38b: Histopathological alteration of ovary tissues in rats given N-nitroso-

N-methylurea and methanol extract of C. portoricensis (M X 400) 
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Figure 4.38c: Histopathological alteration of uterus tissues in rats given N-nitroso-

N-methylurea and methanol extract of C. portoricensis (M X 400) 
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4.2: In-vitro Assessment of Antioxidative and Radical Scavenging Activities of 

C. portoricensis 

According to table 4.4, CP extracts reduced the ABTS cation radicals in a concentration-

dependent manner. Butanol, ethyl acetate and chloroform fractions of CP showed 

concentration-dependent increase in reducing ABTS cation radical. The chloroform 

fraction of CP at 50 μL - 400 μL showed the highest reducing potential by scavenging 

ABTS cation radical in a concentration-dependent way relative to catechin. Specifically, 

the percentage ABTS reducing activity of the chloroform fraction are 27.0%, 34.2%, 

35.3%, 36.7% and 38.2% respectively. Also, the ABTS radical scavenging percentages 

of crude methanol, n-hexane, and ethyl acetate were 10.6%, 21.7%, 27.2%, 26.4% and 

30.9% (crude methanol extract); 7.12%, 8.72%, 14.8%, 19.2%, 21.6% (n-hexane)12.6%, 

28.5%,36.15%, 36.9% and 37.6% (ethyl acetate).  
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TABLE 4.4: THE ABTS RADICAL SCAVENGING ACTIVITY OF C.  

portoricensis In Vitro 

 

CP EXTRACT     50    100     200     300     400               

CONC. (μL/mL) (μL/mL) (μL/mL) (μL/mL) (μL/mL) 

    ABTS Radical Scavenging (%) 

CATECHIN  27.08±1.32 28.38±2.99 29.42±2.82  33.3±1.71  35.85±2.24 

CRUDE          10.6±0.17* 21.65±0.38* 27.17±0.39*  26.43±0.42  30.90±1.36*                                                                                                                              

METHANOL   

N-HEXANE  7.12±2.29* 8.72±2.68* 14.77±1.32* 19.15±0.85*  21.6±0.39* 

FRACTION  

BUTANOL  25.65±3.59 22.65±3.71 26.37±0.79 24.43±0.43  31.07±0.53 

FRACTION  

ETHYL-ACE 12.58±0.26*   28.53±0.73*   36.15±1.21* 36.87±1.03* 37.6±1.40*        

FRACTION 

CHF  27.03±1.29*   34.17±0.41* 35.33±0.88*   36.72±0.39*  38.15±1.22* 

FRACTION 

 

ABTS= (2,2-azinobis-(3-ethylbenzothiazolin-6-sulfonic acid); ETHYL-ACE= 

Ethylacetate; CHF = Chloroform; *= Concentration-dependent increase in ABTS 

radical scavenging (%) 
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Results from table 4.5 shows that CP extracts had a substantial (pless than .05) and 

concentration-dependent increase in DPPH reducing activity. There was dose-dependent 

increase in reducing DPPH radical activity in butanol extract, ethyl acetate extract and 

chloroform fraction. Specifically, the chloroform fraction at 0.0078mg/ml-0.25mg/ml 

revealed the highest scavenging ability relative to standard catechin in a dose-dependent 

way. Also, the chloroform fraction, butanol extract, and ethyl acetate extracts all had a 

percentage DPPH lowering action; 72.5%, 74.4%, 79.1%, 90.5%, 100.8% and 121.0% 

(chloroform fraction); 53.0%, 52.9%, 53.0%, 55.7%, 55.9%, 57.9%, and 59.8% (butanol 

extract) and 55.3%, 55.8%, 55.6%, 60.4%, 64.5% and 74.0% (ethyl-acetate extract) 

respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TABLE 4.5: THE DPPH REDUCING ACTIVITY OF C.  portoricensis In Vitro 
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EXTRACT      0.0078           0.0156             0.03125        0.0625          0.125               0.25          

CONC            (µL/mL)        (µL/mL)          (µL/mL)       (µL/mL)      (µL/mL)        (µL/mL)      

    DPPH Radical Scavenging (%)                            

CATECHIN  104.90±4.87 136.57±2.64  140.66±2.43 137.89±4.36  137.67±2.61  137.90±3.33 

METHANOL 49.05±2.77  52.77±3.23   48.52±3.00   50.41±3.82   50.55±8.45     51.85±6.68        

N-HEXANE 76.74±4.48* 74.48±4.58*  75.64±3.82* 78.74±5.62*  82.75±2.43*  90.94±10.99          

BUTANOL   52.99±3.61* 53.02±2.99* 55.69±3.76* 55.90±2.86*  57.89±3.00*   59.76±3.86*          

ETYL-ACE  55.29±5.35   55.79±5.08* 55.64±6.21* 60.40±4.23     64.53±3.13    79.02±4.34*      

CHF          72.46±3.19* 74.39±4.38* 79.14±3.79* 90.51±3.79*  100.83±4.28*  21.03±3.12*  

 

DPPH= 2,2-Diphenyl-1-Picrylhydrazyl; ETYL-ACE= Ethylacetate; CHF = 

Chloroform; *= Concentration-dependent increase in DPPH radical scavenging (%) 

 

 

 

 

 

 

 

 

 

 

Results from figure 4.41 showed the chloroform fraction of CP have five distinct spot 

on the TLC plate. Out of the spots separated, spot one which is more visible and 
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distinct than the other spots have retention value of 0.44. Also, the distinct spot from 

the chloroform fraction is also present on the ethylacetate fraction but not as distinct as 

the chloroform fraction. The amount of visible compound present in chloroform 

fraction of CP compared to the etthylacetate fraction may probably be responsible for 

the effective activity of the chloroform fraction of CP. In addition, the last fifth spot on 

CP chlororm fraction may also contribute to the effective activity of chloroform 

fraction of CP, when compared to the four spots on ethylacetate fraction. 
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Figure 4.41: Ultra violet view of spotted thin layer chromatography plates 

A. TLC plate spotted with different fractions of C. portoricensis (H=hexane 

fraction, C=chloroform fraction, E=ethylacetate fraction, B=butanol fraction and 

M=methanol fraction) 

B. TLC plate spotted with only chloroform fraction of C. portoricensis 
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4.3: Chemopreventive Effects of Chloroform Fraction of C. portoricensis on 

Biochemical Parameters and Hormone Profile in N-nitroso-N-methylurea and 

Benzo[a]pyerene-induced rats  

Body weights and organo-somatic weights changes of rats exposed to MNU and BP as 

well as chloroform fraction of CP was evaluated in tables 4.6 and 4.7. Administration of 

MNU and BP drastically decreased the animals’ body weight gained by 32% when 

compared to vehincle group.  Contrary to this, organo-somatic weights in the uterus, 

ovary and mammary tissues significantly increased by 2.3 folds, 1.4 fold and 37% 

respectively in rats exposed to MNU and BP. Co-treatment with chloroform fraction of 

CP restored body weight gained and organo-somatic weights relative to MNU and BP 

exposed groups.  
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Table 4.6: Body weight changes and organo-somatic weight of MNU and BP-

exposed rats given chloroform fraction of CP. 

 

   BODY WEIGHT (g)    MAMMARY TISSUE

    

 Original  Terminal  Body mass     Body mass (g)  Organ-body     

Body mass (g) Body mass (g)   Gained (g)                                 mass(a)                      

VEHINCLE        51.32±2.87   144.97±4.48   93.65±1.45    0.64±0.09  0.49±0.03 

MNU+BP        63.83±1.51   141.13±6.00   77.30±6.54*   1.27±0.29*  0.67±0.18 

MNU+BP+CP1 68.89±2.68   167.00±2.34   103.1±2.76**  0.71±0.02**  0.46±0.05** 

MNU+BP+CP2 73.09±4.25   151.08±4.48   77.99±5.63    0.89±0.20**  0.58±0.17** 

CP 2        54.84±2.01   136.38±3.94   81.54±2.71   1.03±0.08  0.66±0.16 

MNU+BP+VIN 80.44±5.56   165.8±4.59   85.36±8.82** 0.60±0.09   0.40±0.06** 

VIN ONLY       66.02±2.47  141.25±8.80   75.23±3.97    0.49±0.13  0.39±0.13

  

MNU= N-nitroso-N-methylurea; BP= Benzo[a]pyrene; CP= C. portoricensis; VIN= 

Vincasar; a= % body weight. CP 1 =50 mg/kg and CP 2= 100 mg/kg. * = p less than .05 

in contrast to vehincle. ** = p less than .05 in contrast to untreated group. Values 

(mean±SDev) are based on 5-8 rats per group. 
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TABLE 4.7: Organs weight of MNU and BP-administered rats given chloroform 

fraction of C. portoricensis 

 

                   UTERUS     OVARY 

 Body mass (g)   Organ- body                    Body mass (g)     Organ- body 

      massa                                      massa 

VEHINCLE    0.17±0.03 0.11±0.01   0.11±0.02 0.07±0.02 

MNU + BP      0.24±0.08 0.22±0.03*   0.14±0.02 0.10±0.02 

MNU+BP+CP1 0.22±0.06 0.23±0.03   0.14±0.03 0.09±0.02 

MNU+BP+CP2 0.16±0.03 0.15±0.02   0.13±0.02 0.05±0.01** 

CP 2    0.21±0.06 0.18±0.01   0.13±0.01 0.08±0.02 

MNU + VIN    0.12±0.02 0.08±0.01   0.18±0.01 0.06±0.00 

VIN ONLY       0.14±0.03 0.15±0.04   0.13±0.01 0.09±0.00 

 

MNU= N-nitroso-N-methylurea; BP= Benzo[a]pyrene; CP= C. portoricensis; VIN= 

Vincasar; a= % body weight. CP 1 =50 mg/kg and CP 2= 100 mg/kg. * = p less than .05 

in contrast to vehincle. ** = p less than .05 in contrast to untreated group. Values 

(mean±SDev) are based on 5-8 rats per group. 
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The urinary parameters of MNU and BP administered rats were investigated in table 

4.8 and the results showed moderate presence of bilirubin levels whereas, a 100 mg/kg 

dose of CP reduced bilirubin levels in urine samples. 
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Table 4.8: Urinary parameters of MNU and BP-administered rats given 

chloroform fraction of C. portoricensis 

Treatment Protein Glucose Bilirubin pH Ketone Urobilinogen Nitrite Ascorbic 

Acid 

Vehincle + - _ 6.3 - +++ - ++ 

MNU+BP + - ++ 7.3 - +++ - - 

MNU+BP+CP1 + - ++ 6 - +++ - - 

MNU+BP+CP2 - - + 6.3 - +++ - - 

CP2 + - Absence 6.5 - +++ - ++ 

MNU+VIN + - ++ 7 - +++ - - 

VIN + - ++ 7 - +++ - ++ 

 

MNU= N-nitroso-N-methylurea; BP= Benzo[a]pyrene; CP= C. portoricensis; VIN= 

Vincasar. CP 1 =50mg/kg and  CP 2= 100 mg/kg. 

+ = Mild; - =Negative; ++ = Moderate; +++ = Normal 
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MNU and BP administration caused remarkable reduction in mammary superoxide 

dismutase (SOD), catalase (CAT), glutathione-S-transferase (GST), total sulphydryl 

(TSH) and glutathione peroxidase (GPx) activities by 46%, 38%, 47%, 50% and 49%, 

respectively when compared to vehincle (Figures 4.41-4.46). However, co-

administration with chloroform fraction of CP at both doses of 50mg/kg and 100 mg/kg 

interestingly mitigated SOD, CAT, GST, TSH and GPx activities statistically similar to 

vehincle values. 
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Figure 4.42: Effect of chloroform fraction of C. portoricensis (CP) in Wistar rats 

given MNU and BP  on mammary glutathione peroxidase (GPx) activities. MNU= 

N-nitroso-N-methylurea; BP= Benzo[a]pyrene; CP= C. portoricensis; VIN= Vincasar. 

CP 1 =50 mg/kg and CP 2= 100 mg/kg. * = p less than .05 in contrast to vehincle. ** = 

p less than .05 in contrast to untreated group. Values (mean±SDev) are based on 5-8 rats 

per group. 
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Figure 4.43: Effect of chloroform fraction of C. portoricensis (CP) in Wistar rats 

given MNU and BP  on mammary reduced glutathione (GSH) levels.  MNU= N-

nitroso-N-methylurea; BP= Benzo[a]pyrene; CP= C. portoricensis; VIN= Vincasar. CP 

1 =50 mg/kg and CP 2= 100 mg/kg. 
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Figure 4.44: Effect of chloroform fraction of C. portoricensis (CP) in Wistar rats 

given MNU and BP  on mammary total sulphydryl (TSH) levels. MNU= N-nitroso-

N-methylurea; BP= Benzo[a]pyrene; CP= C. portoricensis; VIN= Vincasar. CP 1 =50 

mg/kg and CP 2= 100 mg/kg. * = p less than .05 in contrast to vehincle. ** = p less than 

.05 in contrast to untreated group. Values (mean±SDev) are based on 5-8 rats per group. 

 

 

 

 

 

 

 

 

 

 

 



122 
 

 

Figure 4.45: Effect of chloroform fraction of C. portoricensis (CP) in Wistar rats 

given MNU and BP  on mammary Catalase (CAT) activities. MNU= N-nitroso-N-

methylurea; BP= Benzo[a]pyrene; CP= C. portoricensis; VIN= Vincasar. CP 1 =50 

mg/kg and CP 2= 100 mg/kg. * = p less than .05 in contrast to vehincle. ** = p less than 

.05 in contrast to untreated group. Values (mean±SDev) are based on 5-8 rats per group. 
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Figure 4.46: Effect of chloroform fraction of C. portoricensis (CP) in Wistar rats 

given MNU and BP  on mammary superoxide dismutase (SOD) activities. MNU= N-

nitroso-N-methylurea; BP= Benzo[a]pyrene; CP= C. portoricensis; VIN= Vincasar. CP 

1 =50 mg/kg and CP 2= 100 mg/kg. * = p less than .05 in contrast to vehincle. ** = p 

less than .05 in contrast to untreated group. Values (mean±SDev) are based on 5-8 rats 

per group. 
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Figure 4.47: Effect of chloroform fraction of C. portoricensis (CP) in Wistar rats 

given MNU and BP  on mammary glutathione-S-transferse (GST) activities. MNU= 

N-nitroso-N-methylurea; BP= Benzo[a]pyrene; CP= C. portoricensis; VIN= Vincasar. 

CP 1 =50 mg/kg and CP 2= 100 mg/kg. * = p less than .05 in contrast to vehincle. ** = 

p less than .05 in contrast to untreated group. Values (mean±SDev) are based on 5-8 rats 

per group. 
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Mammary malondialdehyde (MDA; index of oxidative stress) level increased drastically 

in MNU and BP-treated rats by 2.6 folds. Comparably, nitric oxide (NO) level and 

myeoloperoxidase (MPO) activity were significantly elevated by 2.6 folds and 1.7 folds; 

respectively in the mammary tissues of MNU and BP groups. Whereas co-treatment 

with CP at both doses significantly (pless than .05) attenuated mammary LPO, NO and 

MPO in relation to MNU and BP groups. 
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Figure 4.48: Effect of chloroform fraction of C. portoricensis (CP) in Wistar rats 

given MNU and BP  on mammary myeloperoxidase (MPO) activities. MNU= N-

nitroso-N-methylurea; BP= Benzo[a]pyrene; CP= C. portoricensis; VIN= Vincasar. CP 

1 =50 mg/kg and CP 2= 100 mg/kg. * = p less than .05 in contrast to vehincle. ** = p 

less than .05 in contrast to untreated group. Values (mean±SDev) are based on 5-8 rats 

per group. 
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Figure 4.49: Effect of chloroform fraction of C.  portoricensis (CP) in Wistar rats 

given MNU and BP  on mammary nitric oxide (NO) levels. MNU= N-nitroso-N-

methylurea; BP= Benzo[a]pyrene; CP= C. portoricensis; VIN= Vincasar. CP 1 =50 

mg/kg and CP 2= 100 mg/kg. * = p less than .05 in contrast to vehincle. ** = p less than 

.05 in contrast to untreated group. Values (mean±SDev) are based on 5-8 rats per group. 
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Figure 4.50: Effect of chloroform fraction of C. portoricensis (CP) in Wistar rats 

given MNU and BP  on mammary malondialdehyde (LPO) levels. MNU= N-nitroso-

N-methylurea; BP= Benzo[a]pyrene; CP= C. portoricensis; VIN= Vincasar. CP 1 =50 

mg/kg and CP 2= 100 mg/kg. * = p less than .05 in contrast to vehincle. ** = p less than 

.05 in contrast to untreated group. Values (mean±SDev) are based on 5-8 rats per group. 
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Administration of MNU and BP significantly reduced uterine CAT, GST, GPx, and 

TSH compared to vehincles. While in uterine SOD and GSH, there were no significant 

variations. However, co-treatment with CP at both doses mitigated the antioxidants 

activities across the treated groups. 
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Figure 4.51: Effect of chloroform fraction of C. portoricensis (CP) in Wistar rats 

given MNU and BP  on uterine glutathione peroxidase (GPx) activities. MNU= N-

nitroso-N-methylurea; BP= Benzo[a]pyrene; CP= C. portoricensis; VIN= Vincasar. CP 

1 =50 mg/kg and CP 2= 100 mg/kg. ** = p less than .05 in contrast to untreated group. 

Values (mean±SDev) are based on 5-8 rats per group. 
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Figure 4.52: Effect of chloroform fraction of C. portoricensis (CP) in Wistar rats 

given MNU and BP  on uterine reduced glutathione (GSH) levels. MNU= N-nitroso-

N-methylurea; BP= Benzo[a]pyrene; CP= C. portoricensis; VIN= Vincasar. CP 1 =50 

mg/kg and CP 2= 100 mg/kg. 
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Figure 4.53: Effect of chloroform fraction of C. portoricensis (CP) in Wistar rats 

given MNU and BP  on uterine total sulphydryl (TSH) levels. MNU= N-nitroso-N-

methylurea; BP= Benzo[a]pyrene; CP= C. portoricensis; VIN= Vincasar. CP 1 =50 

mg/kg and CP 2= 100 mg/kg 
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Figure 4.54: Effect of chloroform fraction of C. portoricensis (CP) in Wistar rats 

given MNU and BP  on uterine Catalase (CAT) activities. MNU= N-nitroso-N-

methylurea; BP= Benzo[a]pyrene; CP= C. portoricensis; VIN= Vincasar. CP 1 =50 

mg/kg and CP 2= 100 mg/kg. * = p less than .05 in contrast to vehincle. ** = p less than 

.05 in contrast to untreated group. Values (mean±SDev) are based on 5-8 rats per group. 
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Figure 4.55: Effect of chloroform fraction of C. portoricensis (CP) in Wistar rats 

given MNU and BP  on uterine superoxide dismutase (SOD) activities. MNU= N-

nitroso-N-methylurea; BP= Benzo[a]pyrene; CP= C. portoricensis; VIN= Vincasar. CP 

1 =50 mg/kg and CP 2= 100 mg/kg * = p less than .05 in contrast to vehincle. ** = p 

less than .05 in contrast to untreated group. Values (mean±SDev) are based on 5-8 rats 

per group. 
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Figure 4.56: Effect of chloroform fraction of C. portoricensis (CP) in Wistar rats 

given MNU and BP  on uterine glutathione-S-transferase (GST) activities. MNU= 

N-nitroso-N-methylurea; BP= Benzo[a]pyrene; CP= C. portoricensis; VIN= Vincasar. 

CP 1 =50 mg/kg and CP 2= 100 mg/kg. * = p less than .05 in contrast to vehincle. ** = 

p less than .05 in contrast to untreated group. Values (mean±SDev) are based on 5-8 rats 

per group. 
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Uterine malondialdehyde level increased in MNU and BP-treated rats by 2.9%. Also, 

nitric oxide (NO) level and myeoloperoxidase (MPO) activity were markedly increased 

by 18% and 4 folds respectively in uterine tissues of MNU and BP groups. Whereas co-

treatment with CP at both doses significantly (pless than .05) attenuated uterine LPO, 

NO and MPO in relation to MNU and BP groups. 
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Figure 4.57: Effect of chloroform fraction of C. portoricensis (CP) in Wistar rats 

given MNU and BP  on uterine nitric oxide (NO) levels. MNU= N-nitroso-N-

methylurea; BP= Benzo[a]pyrene; CP= C. portoricensis; VIN= Vincasar. CP 1 =50 

mg/kg and CP 2= 100 mg/kg. * = p less than .05 in contrast to vehincle. ** = p less than 

.05 in contrast to untreated group. Values (mean±SDev) are based on 5-8 rats per group. 
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Figure 4.58: Effect of chloroform fraction of C. portoricensis (CP) in Wistar rats 

given MNU and BP  on uterine myeloperoxidase (MPO) activities. MNU= N-

nitroso-N-methylurea; BP= Benzo[a]pyrene; CP= C. portoricensis; VIN= Vincasar. CP 

1 =50 mg/kg and CP 2= 100 mg/kg. * = p less than .05 in contrast to vehincle. ** = p 

less than .05 in contrast to untreated group. Values (mean±SDev) are based on 5-8 rats 

per group. 
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Figure 4.59: Effect of chloroform fraction of C. portoricensis (CP) in Wistar rats 

given MNU and BP  on uterine malondialdehyde (LPO) levels. MNU= N-nitroso-N-

methylurea; BP= Benzo[a]pyrene; CP= C. portoricensis; VIN= Vincasar. CP 1 =50 

mg/kg and CP 2= 100 mg/kg. 
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The activities of ovarian GST, CAT, GPx and TSH levels depleted in MNU and BP 

exposed rats when compared to vehincles. In addition, the MNU and BP-treated groups, 

shows a modest decrease in ovarian SOD activity and GSH level in relation to vehincle 

group. However, co-treatment with chloroform fraction of CP at both doses of 50mg/kg 

and 100 mg/kg mitigated the antioxidants activities statistically similar to vehincle 

values. 
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Figure 4.60: Effect of chloroform fraction of C. portoricensis (CP) in Wistar rats 

given MNU and BP  on ovarian glutathione peroxidase (GPx) activities. MNU= N-

nitroso-N-methylurea; BP= Benzo[a]pyrene; CP= C. portoricensis; VIN= Vincasar. CP 

1 =50 mg/kg and CP 2= 100 mg/kg. * = p less than .05 in contrast to vehincle. ** = p 

less than .05 in contrast to untreated group. Values (mean±SDev) are based on 5-8 rats 

per group. 
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Figure 4.61: Effect of chloroform fraction of C. portoricensis (CP) in Wistar rats 

given MNU and BP  on ovarian reduced glutathione (GSH) levels. MNU= N-nitroso-

N-methylurea; BP= Benzo[a]pyrene; CP= C. portoricensis; VIN= Vincasar. CP 1 =50 

mg/kg and CP 2= 100 mg/kg. 
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Figure 4.62: Effect of chloroform fraction of C. portoricensis (CP) in Wistar rats 

given MNU and BP  on ovarian total sulphydryl (TSH) levels. MNU= N-nitroso-N-

methylurea; BP= Benzo[a]pyrene; CP= C. portoricensis; VIN= Vincasar. CP 1 =50 

mg/kg and CP 2= 100 mg/kg. * = p less than .05 in contrast to vehincle. ** = p less than 

.05 in contrast to untreated group. Values (mean±SDev) are based on 5-8 rats per group. 
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Figure 4.63: Effect of chloroform fraction of C. portoricensis (CP) in Wistar rats 

given MNU and BP  on ovarian Catalase (CAT) activities. MNU= N-nitroso-N-

methylurea; BP= Benzo[a]pyrene; CP= C. portoricensis; VIN= Vincasar. CP 1 =50 

mg/kg and CP 2= 100 mg/kg. **=  p less than .05 in contrast to untreated group. Values 

(mean±SDev) are based on 5-8 rats per group. 
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Figure 4.64: Effect of chloroform fraction of C. portoricensis (CP) in Wistar rats 

given MNU and BP  on ovarian superoxide dismutase (SOD) activities. MNU= N-

nitroso-N-methylurea; BP= Benzo[a]pyrene; CP= C. portoricensis; VIN= Vincasar. CP 

1 =50 mg/kg and CP 2= 100 mg/kg. * = p less than .05 in contrast to vehincle. ** = p 

less than .05 in contrast to untreated group. Values (mean±SDev) are based on 5-8 rats 

per group. 
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Figure 4.65: Effect of chloroform fraction of C. portoricensis (CP) in Wistar rats 

given MNU and BP  on ovarian glutathione-S-transferase (GST) activities. MNU= 

N-nitroso-N-methylurea; BP= Benzo[a]pyrene; CP= C. portoricensis; VIN= Vincasar. 

CP 1 =50 mg/kg and CP 2= 100 mg/kg. * = p less than .05 in contrast to vehincle. ** = 

p less than .05 in contrast to untreated group. Values (mean±SDev) are based on 5-8 rats 

per group. 
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Ovarian malondialdehyde level was significantly elevated in MNU and BP-treated rats 

by 58% when compared to vehincle group. Comparably, nitric oxide (NO) level and 

myeoloperoxidase (MPO) activity were drastically increased by 2 folds and 38.9%, 

respectively, in ovarian tissues of MNU and BP groups. Whereas co-treatment with CP 

at both doses significantly (pless than .05) ameliorated ovarian LPO, NO and MPO in 

relation to MNU and BP groups. 
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Figure 4.66: Effect of chloroform fraction of C. portoricensis (CP) in Wistar rats 

given MNU and BP  on ovarian nitric oxide (NO) levels. MNU= N-nitroso-N-

methylurea; BP= Benzo[a]pyrene; CP= C. portoricensis; VIN= Vincasar. CP 1 =50 

mg/kg and CP 2= 100 mg/kg. * = p less than .05 in contrast to vehincle. ** = p less than 

.05 in contrast to untreated group. Values (mean±SDev) are based on 5-8 rats per group. 
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Figure 4.67: Effect of chloroform fraction of C. portoricensis (CP) in Wistar rats 

given MNU and BP on ovarian myeloperoxidase (MPO) activities. MNU= N-

nitroso-N-methylurea; BP= Benzo[a]pyrene; CP= C. portoricensis; VIN= Vincasar. CP 

1 =50 mg/kg and CP 2= 100 mg/kg. * = p less than .05 in contrast to vehincle. ** = p 

less than .05 in contrast to untreated group. Values (mean±SDev) are based on 5-8 rats 

per group. 
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Figure 4.68: Effect of chloroform fraction of C. portoricensis (CP) in Wistar rats 

given MNU and BP on ovarian malondialdehyde (LPO) levels. MNU= N-nitroso-N-

methylurea; BP= Benzo[a]pyrene; CP= C. portoricensis; VIN= Vincasar. CP 1 =50 

mg/kg and CP 2= 100 mg/kg. * = p less than .05 in contrast to vehincle. ** = p less than 

.05 in contrast to untreated group. Values (mean±SDev) are based on 5-8 rats per group. 
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Proteins expression; Caspase-3, caspase-9, p53, BAX, IL- 1β, IL- 6, iNOS, COX-2, 

BCL-2 and beta-catenin are presented in figures 4.68- 4.77. MNU and BP treatment 

caused down-regulation in mammary caspase-3, caspase-9 and BAX activities in 

relation to the Vehincle groups. Contrary to the vehincle, MNU and BP treatment 

increased the activity of beta-catenin, COX-2, and iNOS in the mammary gland. In the 

same manner, administration of MNU and BP demonstrates strong expression in 

mammary interleukins (1β and 6) as well as BCL-2 activities. 
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Figure 4.69: Immunohistochemical staining of βeta-Catenin expression in the 

mammary tissue of MNU and BP rats given chloroform fraction of C. portoricensis. 

MNU= N-nitroso-N-methylurea; BP= Benzo[a]pyrene; CP= C. portoricensis; VIN= 

Vincasar. CP 1 =50 mg/kg and CP 2= 100 mg/kg. The white arrows showing the 

expression of βeta-Catenin. * = p less than .05 in contrast to vehincle. ** = p less than 

.05 in contrast to untreated group. Values (mean±SDev) are based on 5-8 rats per group. 
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Figure 4.70: Immunohistochemical staining of p53 expression in the mammary 

tissue of MNU and BP rats given chloroform fraction of C. portoricensis. MNU= N-

nitroso-N-methylurea; BP= Benzo[a]pyrene; CP= C. portoricensis; VIN= Vincasar. CP 

1 =50 mg/kg and CP 2= 100 mg/kg. The white arrows showing the expression of p53. * 

= p less than .05 in contrast to vehincle. ** = p less than .05 in contrast to untreated 

group. Values (mean±SDev) are based on 5-8 rats per group. 
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Figure 4.71: Immunohistochemical staining of Bcl-2 Associated X-protein (BAX) 

expression in the mammary tissue of MNU and BP rats given chloroform fraction 

of C. portoricensis. MNU= N-nitroso-N-methylurea; BP= Benzo[a]pyrene; CP= C. 

portoricensis; VIN= Vincasar. CP 1 =50 mg/kg and CP 2= 100 mg/kg. The white 

arrows showing the expression of BAX. * = p less than .05 in contrast to vehincle. ** = 

p less than .05 in contrast to untreated group. Values (mean±SDev) are based on 5-8 rats 

per group. 
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Figure 4.72: Immunohistochemical staining of Caspase-9 expression in the 

mammary tissue of MNU and BP rats given chloroform fraction of C. portoricensis. 

MNU= N-nitroso-N-methylurea; BP= Benzo[a]pyrene; CP= C. portoricensis; VIN= 

Vincasar. CP 1 =50 mg/kg and CP 2= 100 mg/kg. The white arrows showing the 

expression of caspase-9. * = p less than .05 in contrast to vehincle. ** = p less than .05 

in contrast to untreated group. Values (mean±SDev) are based on 5-8 rats per group. 
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Figure 4.73: Immunohistochemical staining of Caspase-3 expression in the 

mammary tissue of MNU and BP rats given chloroform fraction of C. 

Portoricensis. MNU= N-nitroso-N-methylurea; BP= Benzo[a]pyrene; CP= C. 

portoricensis; VIN= Vincasar. CP 1 =50 mg/kg and CP 2= 100 mg/kg. The white 

arrows showing the expression of caspase-3. * = p less than .05 in contrast to vehincle. 

** = p less than .05 in contrast to untreated group. Values (mean±SDev) are based on 5-

8 rats per group. 
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Figure 4.74: Immunohistochemical staining of BCL-2 expression in the mammary 

tissue of MNU and BP rats given chloroform fraction of C. Portoricensis. MNU= N-

nitroso-N-methylurea; BP= Benzo[a]pyrene; CP= C. portoricensis; VIN= Vincasar. CP 

1 =50 mg/kg and CP 2= 100 mg/kg. The white arrows showing the expression of BCL-

2. * = p less than .05 in contrast to vehincle. ** = p less than .05 in contrast to untreated 

group. Values (mean±SDev) are based on 5-8 rats per group. 

. 

 

VEHINCLE MNU+BP MNU+BP+CP1 MNU+BP+CP2 

CP 2 MNU+BP+VIN VIN 

 

 

 

 



158 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.75: Immunohistochemical staining of interleukin (IL-6) expression in the 

mammary tissue of MNU and BP rats given chloroform fraction of C. 

Portoricensis.  MNU= N-nitroso-N-methylurea; BP= Benzo[a]pyrene; CP= C, 

portoricensis; VIN= Vincasar. CP 1 =50 mg/kg and CP 2= 100 mg/kg. The white 

arrows showing the expression of IL-6. * = p less than .05 in contrast to vehincle. ** = p 

less than .05 in contrast to untreated group. Values (mean±SDev) are based on 5-8 rats 

per group. 
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Figure 4.76: Immunohistochemical staining of interleukin (IL-1β) expression in the 

mammary tissue of MNU and BP rats given chloroform fraction of C. 

Portoricensis. MNU= N-nitroso-N-methylurea; BP= Benzo[a]pyrene; CP= C. 

portoricensis; VIN= Vincasar. CP 1 =50 mg/kg and CP 2= 100 mg/kg. The white 

arrows showing the expression of IL-1β. * = p less than .05 in contrast to vehincle. ** = 

p less than .05 in contrast to untreated group. Values (mean±SDev) are based on 5-8 rats 

per group. 
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Figure 4.77: Immunohistochemical staining of cyclooxygenase-2 (COX-2) 

expression in the mammary tissue of MNU and BP  rats given chloroform fraction 

of C. Portoricensis. MNU= N-nitroso-N-methylurea; BP= Benzo[a]pyrene; CP= C. 

portoricensis; VIN= Vincasar. CP 1 =50 mg/kg and CP 2= 100 mg/kg. The white 

arrows showing the expression of COX-2. * = p less than .05 in contrast to vehincle. ** 

= p less than .05 in contrast to untreated group. Values (mean±SDev) are based on 5-8 

rats per group. 
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Figure 4.78: Immunohistochemical staining of inducible nitric oxide synthase 

(iNOS) expression in the mammary tissue of MNU and BP rats given chloroform 

fraction of C. Portoricensis.  MNU= N-nitroso-N-methylurea; BP= Benzo[a]pyrene; 

CP= C. portoricensis; VIN= Vincasar. CP 1 =50 mg/kg and CP 2= 100 mg/kg. The 

white arrows showing the expression of iNOS. * = p less than .05 in contrast to 

vehincle. ** = p less than .05 in contrast to untreated group. Values (mean±SDev) are 

based on 5-8 rats per group. 
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MNU and BP-treated rats had significant (pless than .05) higher levels of FSH, LH, 

and progesterone in their mammary tissues when compared to vehincles (figures 4.79- 

4.81). In addition, mammary prolactin level increased in MNU and BP-administered 

rats but not significantly expressed (figure 4.78). Following co-administration with 

chloroform fraction of CP, elevated prolactin, FSH, LH and progesterone were 

significantly (pless than .05) reduced at both doses. 
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Figure 4.79: Immunohistochemical staining of prolactin levels in the mammary 

tissue of MNU and BP rats given chloroform fraction of C. Portoricensis.  MNU= N-

nitroso-N-methylurea; BP= Benzo[a]pyrene; CP= C. portoricensis; VIN= Vincasar. CP 

1 =50 mg/kg and CP 2= 100 mg/kg. The white arrows showing expression of prolactin. 

* = p less than .05 in contrast to vehincle. ** = p less than .05 in contrast to untreated 

group. Values (mean±SDev) are based on 5-8 rats per group. 
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Figure 4.80: Immunohistochemical staining of follicle stimulating hormone (FSH) 

levels in the mammary tissue of MNU and BP rats given chloroform fraction of C. 

Portoricensis. MNU= N-nitroso-N-methylurea; BP= Benzo[a]pyrene; CP= C. 

portoricensis; VIN= Vincasar. CP 1 =50 mg/kg and CP 2= 100 mg/kg. The white 

arrows showing expression of follicle stimulating hormones. * = p less than .05 in 

contrast to vehincle. ** = p less than .05 in contrast to untreated group. Values 

(mean±SDev) are based on 5-8 rats per group. 
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Figure 4.81: Immunohistochemical staining of luteinizing hormone (LH) levels in 

the mammary tissue of MNU and BP rats given chloroform fraction of C. 

Portoricensis. MNU= N-nitroso-N-methylurea; BP= Benzo[a]pyrene; CP= C. 

portoricensis; VIN= Vincasar. CP 1 =50 mg/kg and CP 2= 100 mg/kg. * = p less than 

.05 in contrast to vehincle. ** = p less than .05 in contrast to untreated group. Values 

(mean±SDev) are based on 5-8 rats per group. The white arrows showing expression of 

lutenizing hormones. 
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Figure 4.82: Immunohistochemical staining of progesterone levels in the mammary 

tissue of MNU and BP rats given chloroform fraction of C. Portoricensis. MNU= N-

nitroso-N-methylurea; BP= Benzo[a]pyrene; CP= C. portoricensis; VIN= Vincasar. CP 

1 =50 mg/kg and CP 2= 100 mg/kg. * = p less than .05 in contrast to vehincle. ** = p 

less than .05 in contrast to untreated group. Values (mean±SDev) are based on 5-8 rats 

per group. The white arrows showing expression of progesterone hormones. 
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The cyto-architecture of mammary tissues was examined in figure 4.82. The Vehincle of 

the mammary tissue bared normal stroma and epithelial cells while MNU and BP-

treatment affirmed the presence of ductal adenocarcinoma in the mammary tissue. Co-

treatment with chloroform fraction of CP attenuated MNU and BP altered mammary 

tissues cyto-architecture when compared to vehincles. 
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Figure 4.83: Mammary gland cyto-architecture of MNU and BP rats given 

chloroform fraction of C. portoricensis (M X 400). MNU= N-nitroso-N-methylurea; 

BP= Benzo[a]pyrene; CP= C. portoricensis; VIN= Vincasar. CP 1 =50 mg/kg,  CP 2= 

100 mg/kg.   
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Figure 4.84: Pictorial section of mammary tumor of the mammary gland 

 

 

 

 

 

 

 

 

 

 

A B 

 



170 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.85: Tumor 1- Photomicrograph of mammary tissues stained with 

Haematoxylin and Eosin showing  large cystic tumour (white  arrow), there are necrotic 

tissues (blue arrow) and suppurated inflammatory cells seen (slender arrow).  

 

Tumor 2: Photomicrograph of a mammary tissue  stained by Haematoxylin and Eosin 

showing the glands with ductal carcinoma, the epithelium contains atypical epithelial 

cells that have darkly pigmented nuclei and high nucleocytoplasmic contents  (white  

arrow), normal stroma consisting of a mixture of fibrous connective tissue (slender 

arrow) and normal mammary adipose tissue (blue arrow). 
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MNU and BP-administration strongly up-regulated ovarian BCL-2 and iNOS activities 

in figures 4.87 and 4.88 respectively. On the contrary, ovarian p53, caspase-3 and BAX 

activities (figures 4.85 - 4.87) were mildly down-regulated in MNU and BP-treated rats. 

However, p53, BAX and caspase-3 were impressively up-regulated following co-

treatments with chloroform fraction of CP at both doses. 
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Figure 4.86: Immunohistochemical staining of p53 expression in the ovarian tissue 

of MNU and BP rats given chloroform fraction of C. Portoricensis. MNU= N-

nitroso-N-methylurea; BP= Benzo[a]pyrene; CP= C. portoricensis; VIN= Vincasar. CP 

1 =50 mg/kg and CP 2= 100 mg/kg. * = p less than .05 in contrast to vehincle. ** = p 

less than .05 in contrast to untreated group. Values (mean±SDev) are based on 5-8 rats 

per group. The white arrows showing expression of p53. 
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Figure 4.87: Immunohistochemical staining of Caspase-3 expression in the ovarian 

tissue of MNU and BP rats given chloroform fraction of C. Portoricensis. MNU= N-

nitroso-N-methylurea; BP= Benzo[a]pyrene; CP= C. portoricensis; VIN= Vincasar. CP 

1 =50 mg/kg and CP 2= 100 mg/kg. * = p less than .05 in contrast to vehincle. ** = p 

less than .05 in contrast to untreated group. Values (mean±SDev) are based on 5-8 rats 

per group. The white arrows showing expression of caspase-3. 
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Figure 4.88: Immunohistochemical staining of Bcl-2 Associated X-protein (BAX) 

expression in the ovarian tissue of MNU and BP rats given chloroform fraction of 

C. Portoricensis. MNU= N-nitroso-N-methylurea; BP= Benzo[a]pyrene; CP= C. 

portoricensis; VIN= Vincasar. CP 1 =50 mg/kg and CP 2= 100 mg/kg. * = p less than 

.05 in contrast to vehincle. ** = p less than .05 in contrast to untreated group. Values 

(mean±SDev) are based on 5-8 rats per group. The white arrows showing expression 

of BAX. 
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Figure 4.89: Immunohistochemical staining of inducible nitric oxide synthase 

(iNOS) expression in the ovarian tissue of MNU and BP rats given chloroform 

fraction of C. Portoricensis. MNU= N-nitroso-N-methylurea; BP= Benzo[a]pyrene; 

CP= C. portoricensis; VIN= Vincasar. CP 1 =50 mg/kg and CP 2= 100 mg/kg. * = p 

less than .05 in contrast to vehincle. ** = p less than .05 in contrast to untreated group. 

Values (mean±SDev) are based on 5-8 rats per group. The white arrows showing 

expression of iNOS. 
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Figure 4.90: Immunohistochemical staining of BCL-2 expression in the ovarian 

tissue of MNU and BP rats given chloroform fraction of C. Portoricensis. MNU= N-

nitroso-N-methylurea; BP= Benzo[a]pyrene; CP= C. portoricensis; VIN= Vincasar. CP 

1 =50 mg/kg and CP 2= 100 mg/kg. * = p less than .05 in contrast to vehincle. ** = p 

less than .05 in contrast to untreated group. Values (mean±SDev) are based on 5-8 rats 

per group. The white arrows showing expression of BCL-2. 
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Ovarian prolactin, FSH, LH and progesterone levels were drastically increased in MNU 

and BP-treated groups (figures 108-111 and figures 4.90 - 4.92). However, following 

co-administration with chloroform fraction of CP, elevated prolactin, FSH, LH and 

progesterone were significantly (pless than .05) reduced at both doses. 
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Figure 4.91: Immunohistochemical staining of prolactin level in the ovarian tissue 

of MNU and BP rats given chloroform fraction of C. Portoricensis. MNU= N-

nitroso-N-methylurea; BP= Benzo[a]pyrene; CP= C. portoricensis; VIN= Vincasar. CP 

1 =50 mg/kg and CP 2= 100 mg/kg. * = p less than .05 in contrast to vehincle. ** = p 

less than .05 in contrast to untreated group. Values (mean±SDev) are based on 5-8 rats 

per group. The white arrows showing expression of prolactin. 
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Figure 4.92: Immunohistochemical staining of follicle stimulating hormone (FSH) 

levels in the ovarian tissue of MNU and BP rats given chloroform fraction of C. 

Portoricensis. MNU= N-nitroso-N-methylurea; BP= Benzo[a]pyrene; CP= C. 

portoricensis; VIN= Vincasar. CP 1 =50 mg/kg and CP 2= 100 mg/kg. * = p less than 

.05 in contrast to vehincle. ** = p less than .05 in contrast to untreated group. Values 

(mean±SDev) are based on 5-8 rats per group. The white arrows showing expression of 

follicle stimulating hormones. 
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Figure 4.93: Immunohistochemical staining of luteinizing hormone (LH) levels in 

the ovarian tissue of MNU and BP rats given chloroform fraction of C. 

Portoricensis.  MNU= N-nitroso-N-methylurea; BP= Benzo[a]pyrene; CP= C. 

portoricensis; VIN= Vincasar. CP 1 =50 mg/kg and CP 2= 100 mg/kg. The white 

arrows showing expression of luteinizing hormones. 
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Figure 4.94: Immunohistochemical staining of progesterone levels in the ovarian 

tissue of MNU and BP rats given chloroform fraction of C. Portoricensis. MNU= N-

nitroso-N-methylurea; BP= Benzo[a]pyrene; CP= C. portoricensis; VIN= Vincasar. CP 

1 =50 mg/kg and CP 2= 100 mg/kg. * = p less than .05 in contrast to vehincle. ** = p 

less than .05 in contrast to untreated group. Values (mean±SDev) are based on 5-8 rats 

per group. The white arrows showing expression of progesterone hormone. 
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The cyto-architecture of ovarian tissues was examined in figure 4.94. The vehincle 

ovary tissues disclosed usual connective tissues with normal theca cells layer, while 

MNU and BP treatment causes fibrosis and vascular congestion in the ovarian stroma, as 

well as damaged cells. However, co-treatment with chloroform fraction of CP attenuated 

MNU and BP altered ovarian tissues cyto-architecture when compared to vehincles. 
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Figure 4.95: Ovarian cyto-architecture of MNU and BP rats given chloroform 

fraction of C. Portoricensis (M X 400).  MNU= N-nitroso-N-methylurea; BP= 

Benzo[a]pyrene; CP= C. portoricensis; VIN= Vincasar. CP 1 =50 mg/kg and  CP 2= 

100 mg/kg body weight.   
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Administration of MNU and BP drastically reduced uterine caspase-3 while BCL-2 

activity was strongly elevated when compared to vehincles. However, caspase-3 and 

BCL-2 were impressively regulated following co-treatments with chloroform fraction of 

CP at both doses. 
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Figure 4.96: Immunohistochemical staining of Caspase-3 expression in the uterine 

tissue of MNU and BP rats given chloroform fraction of C. Portoricensis. MNU= N-

nitroso-N-methylurea; BP= Benzo[a]pyrene; CP= C. portoricensis; VIN= Vincasar. CP 

1 =50 mg/kg and CP 2= 100 mg/kg. * = p less than .05 in contrast to vehincle. ** = p 

less than .05 in contrast to untreated group. Values (mean±SDev) are based on 5-8 rats 

per group. The white arrows showing expression of caspase-3. 
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Figure 4.97: Immunohistochemical staining of BCL-2 expression in the uterine 

tissue of MNU and BP rats given chloroform fraction of C. Portoricensis. MNU= N-

nitroso-N-methylurea; BP= Benzo[a]pyrene; CP= C. portoricensis; VIN= Vincasar. CP 

1 =50 mg/kg and CP 2= 100 mg/kg. * = p less than .05 in contrast to vehincle. ** = p 

less than .05 in contrast to untreated group. Values (mean±SDev) are based on 5-8 rats 

per group. The white arrows showing expression of BCL-2. 
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Uterine prolactin, FSH, LH, and progesterone levels were drastically increased in MNU 

and BP-treated groups (figures 4.97 - 4.100). However, following co-administration 

with chloroform fraction of CP, elevated prolactin, FSH, LH, and progesterone were 

significantly (pless than .05) reduced at both CP doses. 
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Figure 4.98: Immunohistochemical staining of prolactin hormone levels in the 

uterine tissue of MNU and BP rats given chloroform fraction of C. Portoricensis. 

MNU= N-nitroso-N-methylurea; BP= Benzo[a]pyrene; CP= C. portoricensis; VIN= 

Vincasar. CP 1 =50 mg/kg and CP 2= 100 mg/kg. * = p less than .05 in contrast to 

vehincle. ** = p less than .05 in contrast to untreated group. Values (mean±SDev) are 

based on 5-8 rats per group. The white arrows showing expression of prolactin hormone. 
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Figure 4.99: Immunohistochemical staining of follicle stimulating hormone (FSH) 

levels in the uterine tissue of MNU and BP rats given chloroform fraction of C. 

Portoricensis. MNU= N-nitroso-N-methylurea; BP= Benzo[a]pyrene; CP= C. 

portoricensis; VIN= Vincasar. CP 1 =50 mg/kg and CP 2= 100 mg/kg. * = p less than 

.05 in contrast to vehincle. ** = p less than .05 in contrast to untreated group. Values 

(mean±SDev) are based on 5-8 rats per group. The white arrows showing expression of 

follicle stimulating hormone. 
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Figure 4.100: Immunohistochemical staining of lutenizing hormone (LH) levels in 

the uterine tissue of MNU and BP rats given chloroform fraction of C. 

Portoricensis. MNU= N-nitroso-N-methylurea; BP= Benzo[a]pyrene; CP= C. 

portoricensis; VIN= Vincasar. CP 1 =50 mg/kg and CP 2= 100 mg/kg. * = p less than 

.05 in contrast to vehincle. ** = p less than .05 in contrast to untreated group. Values 

(mean±SDev) are based on 5-8 rats per group. The white arrows showing expression of 

lutenizing hormone. 
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Figure 4.101: Immunohistochemical staining of progesterone hormone levels in 

the uterine tissue of MNU and BP rats given chloroform fraction of C. 

Portoricensis. MNU= N-nitroso-N-methylurea; BP= Benzo[a]pyrene; CP= C. 

portoricensis; VIN= Vincasar. CP 1 =50 mg/kg and CP 2= 100 mg/kg. * = p less than 

.05 in contrast to vehincle. ** = p less than .05 in contrast to untreated group. Values 

(mean±SDev) are based on 5-8 rats per group. The white arrows showing expression of 

progesterone hormone. 
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The cyto-architecture of the uterus was investigated in figure 4.101. The uterine cyto-

architecture emerges usual in the vehincle while MNU and BP treatment divulged 

extremely permeated endometrial glands with reddened swollen inflamed stroma cells. 

Co-treatment with chloroform fraction of CP ameliorated MNU and BP altered uterine 

tissues cyto-architecture when compared to vehincle group. 
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Figure 4.102: Uterine cyto-architecture tissues of MNU and BP given chloroform 

fraction of CP (M X 400). MNU= N-nitroso-N-methylurea; BP= Benzo[a]pyrene; CP= 

C. portoricensis; VIN= Vincasar. CP 1 =50 mg/kg,  CP 2= 100 mg/kg. 
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The GC-MS spectral results and data base search identified ten (10) major compound 

from the chloroform fraction of C. portoricensis. Out of the compounds identified, GC-

MS result revealed compound 2 (hexadecanoic acid methyl ester) as the major 

constituents while compound 9 (1-undecene,11-nitro-) as the least of the compounds 

identified. 
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Figure 4.103: Finger printing of C. portoricensis (chloroform fraction) by GC-MS 
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Table 4.9: Identified Compounds from C. portoricensis (chlroform fraction)  

 

GC   

Peak No 

Compounds Retention 

Time 

Amount % 

1 Hexadecyl pentyl ether 13.941 3.10 

2 Hexadecanoic acid methyl ester 21.946 32.17 

3 Tretradecanoic acid 22.662 6.25 

4 1,8,11-Heptadecatriene 25.500 4.63 

5 6-octadecenoic acid methyl ester 25.654 25.60 

6 1,19-Eicosadiene 25.786 9.05 

7 Z-7-tetradecenoic acid 26.215 11.51 

8 13-tetradecenal 26.433 2.77 

9 1-undecene,11-nitro- 26.450 1.10 

10 Squalene 27.720 2.29 
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Figure 4.104: Chromatogram of C. portoricensis (chlroform fraction) by GCMS  
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4.4: Assessment of Antiproliferative, Antioxidative and Apoptotic Effects of   

Chloroform Fraction of C. portoricensis in MCF-7 cells 

As indicated in Table 4.10 , chloroform fraction of CP significantly decreased cell 

viability and survival at 72 hours by 87.5% at 100 μg/ml similar to the effect of the 

standard drug Vincasar (87.6 %) relative to the Vehincles.  
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TABLE 4.10: EFFECT OF CHLOROFORM FRACTION OF C. portoricensis 

AND VINCASAR ON CELL GROWTH INHIBITION IN MCF-7 CELLS 

 

CP       VIN 

Conc (µg/mL)     Gowth Inhibition(%)     Conc (µg/mL)              Growth Inhibition

   

  5   1.7*    5   49.0 

  25   28.6*    25   52.3 

  50   49.2*    50   87.6 

  100   87.5*    100   87.6 

 

 

*= concentration-dependent increase in growth inhibition (%) 

CP= C. portoricensis; VIN= Vincasar. 

 

 

 

 

 

 

 

 

 

 



200 
 

Figures 4.104, 4.105 and 4.106 showed chloroform fraction of CP influences and 

encouraged apoptosis to take place evidenced by increased in caspase-9,-3 and BaX 

activitiesin CP treated cell-lines relative to vehincle. 
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Figure 4.105: Effects of chloroform fraction of C. portoricensis on Caspase-9 

activity on MCF-7 cell lysate in vitro. CP= C. portoricensis; VIN= Vincasar.  Values 

are the mean ± SDev of triplicate determination of the experiment.  
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Figure 4.106 : Effects of chloroform fraction of C. portoricensis on Caspase-3 levels 

on MCF-7 cell lysate in vitro. VIN= Vincasar; CP= C. portoricensis. Values are the 

mean ± SDev of triplicate determination of the experiment.  
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Figure 4.107: Effects of chloroform fraction of C. portoricensis on BAX activity on 

MCF-7 cell lysate in vitro. VIN= Vincasar; CP= C. portoricensis. Values are the mean 

± SDev of triplicate determination of the experiment. * pless than .05 in contrast to 

vehincle cell lysate.  
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Inflammatory markers IL-1β and MPO was suppressed by CP treament similar to 

standard drug vincasar when compared to vehincle (figures 4.107 and 4.109). In the 

same manner, CP and vincasar treatment suppressed oxidative stress (LPO) marker  

(figure 4.108). Also, SOD and Catalase activities was significantly elevated in CP and 

vincasar treated cells relative to vehincle groups (figures 4.110 and 4.111). 
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Figure 4.108: Effects of chloroform fraction of C. portoricensis on levels of 

interleukin-1β (IL-1β) on MCF-7 cell lysate in vitro. VIN= Vincasar; CP= C. 

portoricensis. Values are the mean ± SDev of triplicate determination of the experiment. 

* pless than .05 in contrast to vehincle cell lysate.  
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Figure 4.109: Effects of chloroform fraction of C. portoricensis on malondialdehyde 

(LPO) levels on MCF-7 cell lysate in vitro. VIN= Vincasar; CP= C. portoricensis. 

Values are the mean ± SDev of triplicate determination of the experiment. * pless than 

.05 in contrast to vehincle cell lysate.  
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Figure 4.110: Effects of chloroform fraction of C. portoricensis on myeloperoxidase 

(MPO) activities on MCF-7 cell lysate in vitro. VIN= Vincasar; CP= C. portoricensis. 

Values are the mean ± SDev of triplicate determination of the experiment. * pless than 

.05 in contrast to vehincle cell lysate.  
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Figure 4.111: Effects of chloroform fraction of C. portoricensis on superoxide 

dismutase (SOD) activities on MCF-7 cell lysate in vitro. VIN= Vincasar; CP= C. 

portoricensis. Values are the mean ± SDev of triplicate determination of the experiment. 

* pless than .05 in contrast to vehincle cell lysate.  
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Figure 4.112: Effects of chloroform fraction of C. portoricensis on Catalase (CAT) 

activities on MCF-7 cell lysate in vitro.  VIN= Vincasar; CP= C. portoricensis. Values 

are the mean ± SDev of triplicate determination of the experiment. * pless than .05 in 

contrast to vehincle cell lysate.  
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4.5: Possible Curative Effects of C. portoricensis (chloroform fraction) on N-

nitroso-N-methylurea and Benzo[a]pyerene-induced Mammary Toxicity in Wistar 

Rats  

The body weight gained [MNU+BP-treated rats] was slightly reduced by 5% in 

relation to vehincle group (Table 4.11). On the contrary, MNU and BP increased the 

weight and organo-somatic weight of mammary tissues in the groups by 3 folds and 2-

folds, respectively. Post-treatment with chloroform fraction of CP restored the tissue 

weight and organosomatic weight near normal vehincle values.  
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TABLE 4.11: BODY WEIGHT CHANGES OF WISTAR RATS ON EXPOSURE 

TO MNU AND BP GIVEN CHLOROFORM FRACTION OF C. portoricensis 

AND VINCASAR  

 

Treatment Original Terminal Body mass Mammary Organ-body 

  Body mass Body mass Gained (g) Weight (g) Weight (a) 

VEHINCLE     63.55±6.02   150.83±5.25   87.28±5.70  0.36±0.07  0.24±0.05 

MNU+BP     83.43±6.66  164.08±8.28   80.65±8.14 1.46±0.40*  92±0.04* 

MNU+BP+CP   79.51±5.89  157.67±22.22   78.16±6.8 11.00±0.21**  0.55±0.07** 

MNU+BP+VIN 61.48±6.94  160.78±25.38   99.30±32.31  1.22±0.37  0.68±0.03** 

 

 

MNU= N-nitroso-N-methylurea; BP= Benzo[a]pyrene; CP= C. portoricensis (100 

mg/kg); VIN= Vincasar, a= % body weight. * = pless than .05 in contrast to vehincle. ** 

= pless than .05 in contrast to untreated group. Values (mean±SDev) are based on 5-8 

rats per group. 
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The data from figure 4.112 – figure 4.114 on liver functions parameters ( ALT, AST 

and BIL) clearly demonstrate a slight increased in ALT, AST and T-Bil by 4%, 1% 

and 16% in groups given MNU and BP. Post treatment with chloroform fraction of CP 

ameilorated the serum ALT and T-Bil level without affecting the AST activity.  
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Figure 4.113: Effect of chloroform fraction of C. portoricensis (CP) on alanine-

aminotransferases (ALT) activities in MNU and BP -treated rats. MNU= N-nitroso-

N-methylurea; BP= Benzo[a]pyrene; CP= C. portoricensis (100mg/kg); VIN= Vincasar. 

Values (mean±SDev) are based on 5-8 rats per group. 
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Figure 1.114: Effect of chloroform fraction of C. portoricensis (CP) on aspartate-

aminotransferases (AST) activities in MNU and BP -treated rats. MNU= N-nitroso-

N-methylurea; BP= Benzo[a]pyrene; CP= C. portoricensis (100 mg/kg); VIN= 

Vincasar. Values (mean±SDev) are based on 5-8 rats per group. 
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Figure 4.115: Effect of chloroform fraction of C. portoricensis (CP) on total 

bilirubin levels (T-BIL) in MNU and BP-treated rats. MNU= N-nitroso-N-

methylurea; BP= Benzo[a]pyrene; CP= C. portoricensis (100 mg/kg); VIN= Vincasar. * 

= pless than .05 in contrast to vehincle. ** = pless than .05 in contrast to untreated 

group. Values (mean±SDev) are based on 5-8 rats per group. 
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Mammary SOD, GST and CAT activities decreased after MNU and BP treatment. 

However, CP post treament restored the tissue SOD, GST and CAT significantly 

(Figures 4.115 - 4.117).  MNU and BP treatment specifically decreased SOD, GST and 

CAT by 62%, 59% and 54% respectively relative to vehincle group. 
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Figure 4.116: Effect of chloroform fraction of C. portoricensis (CP) on Catalase 

(CAT) activities in MNU and BP -treated rats. MNU= N-nitroso-N-methylurea; BP= 

Benzo[a]pyrene; CP= C. portoricensis (100 mg/kg); VIN= Vincasar. * = pless than .05 

in contrast to vehincle. ** = pless than .05 in contrast to untreated group. Values 

(mean±SDev) are based on 5-8 rats per group. 
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Figure 4.117: Effect of chloroform fraction of C. portoricensis (CP) on glutathione-

S-transferases (GST) activities in MNU and BP-treated rats. MNU= N-nitroso-N-

methylurea; BP= Benzo[a]pyrene; CP= C. portoricensis (100 mg/kg); VIN= Vincasar. * 

= pless than .05 in contrast to vehincle. ** = pless than .05 in contrast to untreated 

group. Values (mean±SDev) are based on 5-8 rats per group. 
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Figure 4.118: Effect of chloroform fraction of C. portoricensis (CP) on superoxide 

dismutase (SOD) activities in MNU and BP -treated rats. MNU= N-nitroso-N-

methylurea; BP= Benzo[a]pyrene; CP= C. portoricensis (100 mg/kg); VIN= Vincasar. * 

= pless than .05 in contrast to vehincle. ** = pless than .05 in contrast to untreated 

group. Values (mean±SDev) are based on 5-8 rats per group. 

 

 

 

 

 

 

 

 

 

 

 



220 
 

The levels of GSH, TSH and GPx activity following MNU and BP administration 

slightly reduced when compared to the vehincles. While post CP treament increased 

GSH, TSH and GPx activity but not significantly expressed. (Figures 4.118 - 4.120). 
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Figure 4.119: Effect of chloroform fraction of C. portoricensis (CP) on glutathione 

peroxidase (GPx) activities in MNU and BP-treated rats. MNU= N-nitroso-N-

methylurea; BP= Benzo[a]pyrene; CP= C. portoricensis (100 mg/kg); VIN= Vincasar. 

Values (mean±SDev) are based on 5-8 rats per group. 
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Figure 4.120: Effect of chloroform fraction of C. portoricensis (CP) on reduced 

glutathione (GSH) levels in MNU and BP-treated rats. MNU= N-nitroso-N-

methylurea; BP= Benzo[a]pyrene; CP= C. portoricensis (100 mg/kg); VIN= Vincasar. 

Values (mean±SDev) are based on 5-8 rats per group. 
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Figure 4.121: Effect of chloroform fraction of C. portoricensis (CP) on total 

sulphydryl (TSH) levels in MNU and BP-treated rats. MNU= N-nitroso-N-

methylurea; BP= Benzo[a]pyrene; CP= C. portoricensis (100 mg/kg); VIN= Vincasar. 

Values (mean±SDev) are based on 5-8 rats per group. 
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MNU and BP administration results showed a considerable increase in LPO, NO, and 

MPO activity in serum and mammary tissue. However, post treatment with chloroform 

fraction of CP reduced the levels of LPO, NO and MPO activity (figures 4.121 - 

4.123).  
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Figure 4.122: Effect of chloroform fraction of C. portoricensis (CP) on 

malondialdehyde (LPO) levels in MNU and BP-treated rats. MNU= N-nitroso-N-

methylurea; BP= Benzo[a]pyrene; CP= C. portoricensis (100 mg/kg); VIN= Vincasar. 

Values (mean±SDev) are based on 5-8 rats per group. 
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Figure 4.123: Effect of chloroform fraction of C. portoricensis (CP) on nitric oxide 

(NO) levels in MNU and BP-treated rats. MNU= N-nitroso-N-methylurea; BP= 

Benzo[a]pyrene; CP= C. portoricensis (100 mg/kg); VIN= Vincasar. Values (mean ± 

SDev) are based on 5-8 rats per group. 
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Figure 4.124: Effect of chloroform fraction of C. portoricensis (CP) on 

myeloperoxidase (MPO) activities in MNU and BP-treated rats. MNU= N-nitroso-

N-methylurea; BP= Benzo[a]pyrene; CP= C. portoricensis (100 mg/kg); VIN= 

Vincasar. * = pless than .05 in contrast to vehincle. Values (mean±SDev) are based on 

5-8 rats per group. 
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The mammary tissues from MNU and BP administered group showed extensive NF-kB 

and iNOS protein expression (Figures 4.124- 4.125), and CP treatment exhibited 

considerable inhibition of  iNOS and NF-kB expression (Figures 4.124- 4.125).  
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Figure 4.125: Effect of chloroform fraction of C. portoricensis (CP) on Nuclear 

factor kappa B (NF-kB) activity in MNU and BP-treated rats.  MNU= N-nitroso-N-

methylurea; BP= Benzo[a]pyrene; CP= C. portoricensis (100 mg/kg); VIN= Vincasar. * 

= pless than .05 in contrast to vehincle. ** = pless than .05 in contrast to untreated 

group. Values (mean±SDev) are based on 5-8 rats per group. The white arrows showing 

expression of NF-kB. 
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Figure 4.126: Effect of chloroform fraction of C. portoricensis (CP) on inducible 

nitric oxide synthase (iNOS) activity in MNU and BP-treated rats. MNU= N-

nitroso-N-methylurea; BP= Benzo[a]pyrene; CP= C. portoricensis (100 mg/kg); VIN= 

Vincasar. * = pless than .05 in contrast to vehincle. ** = pless than .05 in contrast to 

untreated group. Values (mean±SDev) are based on 5-8 rats per group. The white 

arrows showing expression of iNOS. 
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To evaluate the amount of cell death in mammary tumor specimens, 

immunohistochemistry was performed. Apoptotic cells were highly uncommon in the 

tumors of MNU and BP vehincle rats. However, in the CP + MNU and BP groups, a 

substantial increase in the apoptotic cell population was observed (Figure 4.126). Bax, 

p53, Caspase-3 expression was extremely low in MNU and BP treated rats (figures 

4.126- figure 4.128). However, in the mammary tissues collected from the CP and VIN 

treatment groups, there was a significant rise in Bax, p53, and caspase-3 expression. 
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Figure 4.127: Effect of chloroform fraction of C. portoricensis (CP) on p53 activity 

in MNU and BP-treated rats. MNU= N-nitroso-N-methylurea; BP= Benzo[a]pyrene; 

CP= C. portoricensis (100 mg/kg); VIN= Vincasar. * = pless than .05 in contrast to 

vehincle. ** = pless than .05 in contrast to untreated group. Values (mean±SDev) are 

based on 5-8 rats per group. The white arrows showing expression of p53. 
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Figure 4.128:  Effect of chloroform fraction of C. portoricensis (CP) on Bcl-2 

Associated X-protein (BAX) activity in MNU and BP-treated rats. MNU= N-

nitroso-N-methylurea; BP= Benzo[a]pyrene; CP= C. portoricensis (100 mg/kg); VIN= 

Vincasar. * = pless than .05 in contrast to vehincle. ** = pless than .05 in contrast to 

untreated group. Values (mean±SDev) are based on 5-8 rats per group. The white 

arrows showing expression of BAX. 
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Figure 4.129: Effect of chloroform fraction of C. portoricensis (CP) on Caspase-3 

activity in MNU and BP-treated rats. MNU= N-nitroso-N-methylurea; BP= 

Benzo[a]pyrene; CP= C. portoricensis (100 mg/kg); VIN= Vincasar. Values 

(mean±SDev) are based on 5-8 rats per group. The white arrows showing expression of 

caspase-3. 
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The mass tumor was identified in both the mammary gland and the neck tissue, as 

shown by maglinant cells and piknotic nuclei with a high nucleocytoplasmic ratio in the 

mammary gland (Figure 4.129). After 10 weeks of MNU and BP-treatment, the 

presence of mammary tumor accompanied by neck metasis evidenced by massive neck 

tumor was confirmed by histological evaluation (Figure 4.130). In addition, the neck 

tissue showed severe metastatic cancer of the mammary glandular tissues (Figure 4.131 

and figure 4.132). However, 2 weeks post treament with chloroform fraction of CP 

reversed the tumorigenic effects of MNU and BP treatment.  
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Figure 4.130: Photomicrograph of mammary gland tissues in MNU and BP rats 

given chloroform fraction of C. portoricensis (M X 400). MNU= N-nitroso-N-

methylurea; BP= Benzo[a]pyrene; CP= C. portoricensis (100 mg/kg); VIN= Vincasar.  
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Figure 4.131: Pictorial section of experimental animal bearing neck tumor before 

and after CP treatment. 
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Figure 4.132: A - Photomicrograph of a neck tissue section stained with 

Haematoxylin and Eosin showing normal skin and musularis tissues (white arrow) 

as well as normal adipose tissues.  

 

B - Photomicrograph of a Neck tissue section stained by Haematoxylin and Eosin 

showing severe metastatic cancerous mammary glandular tissues (white arrow). 
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Figure 4.133: Photomicrograph of neck tumor in MNU and BP rats given 

chloroform fraction of CP (M X 400). MNU= N-nitroso-N-methylurea; BP= 

Benzo[a]pyrene; CP= C. portoricensis (100 mg/kg); VIN= Vincasar.  
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CHAPTER FIVE 

5.1 DISCUSSION 

Several studies have documented increased mortality rate due to BC (Rafieian-kopaei et 

al., 2017). However, researchers have made progress in developing better options on 

effective and safer drugs towards cancer therapy (Brar et al., 2018; Remani, 2019; Tai, 

2020). Safer anticancer agents are ceaselessly being identified and evolved from natural 

plants which have been reported to be effective and less toxic. Plant extracts and 

phytoconstituents have been found to exhibit powerful anti-proliferative effects in vitro 

and in vivo studies ( Harlev et al., 2012; Pieme et al., 2014; Etti et al., 2017; Mate et al., 

2017; Jang et al., 2019; Stephane et al., 2019; Webb and Kukard, 2020).  The effects of 

CP root bark formulations in vitro and in animals were studied to aid in the hunt for 

safer anticancer treatments. The CP has been reported to be used as a treatment for a 

variety of ailments. Using biochemical and immunohistochemical results, this study 

demonstrated that the root bark of CP posess anti-tumor effects against NMU and BP 

induced-mammary, uterine, and ovarine toxicities in experimental rats. The 

advancement of disease has been connected to a reduction in animal overall health as 

measured by body weight loss and death rate (Harguindey et al., 2008). CP's capacity to 

restore body weight loss in the NMU and BP-treated groups demonstrated its protective 

impact. However, as compared to normal control rats, vincristine-treated animals had 

significantly lower body weights.  

 

Protective effect of methanol extract of Calliandra portoricensis on serum 

parameters, antioxidants status, and hormone receptors in N-methyl-N-

nitrosourea-administered rats. 

The CP methanolic root extract reduced NMU-induced cell damage in the breast, uterus, 

as well as ovary of experimental animals, according to this study. This study showed a 

relationship between NMU administration and oxidative stress (Oishi et al., 2017). 

Excess supply of oxidants, as well as weakening of the antioxidant defense system, 
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leads to an imbalance between pro-oxidants and antioxidants, resulting in oxidative 

stress. (Adaramoye et al., 2016; Ou-yang et al., 2019). However, because every 

molecule returns to its reduced state upon oxidation, a standard quantity of ROS is 

required for normal cellular activities (Scheibmeir et al., 2005; Alehaideb et al., 2020). 

Following administration of NMU in experimental rats, excessive generation of ROS 

ensued especially in female reproductive organs, this may be link to fertility problem 

(Knickle et al., 2018; Alehaideb et al., 2020) . NMU administration led to a significant 

increase in MDA levels in the breast, uterine, and ovarian tissues, as well as a decrease 

in the activities of SOD, CAT, TSH, and GSH. The fall in enzymatic and non-enzymatic 

antioxidant defense system as well as elevation in malondialdehyde levels is a clear 

testimony of oxidative stress which further corroborates previous findings on NMU-

induced carcinogenesis (Pugalendhi et al., 2011; Choi et al., 2014) . GST and GPx 

activities were also severely damaged as a result of NMU administration. Treatment 

with CP, on the other hand, resulted in a considerable restoration of the oxidative stress 

indicators. Interestingly, with larger doses of CP, the markers of oxidative stress, 

particularly CAT and SOD activity, worsened, although GSH and TSH levels 

significantly improved in a dose-dependent manner, this is probably due to depletion in 

SOD and CAT activities as the first line defense antioxidant enzymes against the attacks 

of the generated free radicals.  Furthermore, mammary, uterine and ovarian MPO and 

NO was elevated in NMU-administered groups. CP was found to drastically decrease 

MPO levels in mammary, uterine, and ovarian tissues at various doses, with no 

significant changes in uterine or ovarian NO levels.  

 

In 90% of BCs, receptors for estrogen, progesterone , and epidermal growth factor are 

expressed (Rahman et al., 2016; Burton et al., 2019). In the same manner, estrogen, 

progesterone and prolactin are importantly involved in mammary gland development 

(You et al., 2017; Silihe et al., 2017). The expression of progesterone receptor and 

estrogen receptor requires certain amount of estrogen for its activations, thus, separating 

the effects of these hormones from its receptors will be difficult (Goss, 2014; Eaton et 

al., 1999). The results show that receptors for estrogen, progesterone receptor, and 

epidermal growth factor receptor 2 activities are elevated in NMU groups, whereas CP 

treatments at all doses dramatically down-regulated estrogen receptor, progesterone 

receptor, and epidermal growth factor receptor activities across CP and vincristine 

treated groups.  
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Assessment of the most potent fraction of root bark of Calliandra portoricensis in 

vitro using antioxidants methods. 

Free radical accumulation has been linked to diseases such as cancer, diabetes, heart 

disease, and neurological problems in several studies. At high concentrations, however, 

free radicals can be hazardous to the body and damage all major components of cells, 

including DNA, proteins, and cell membranes. The damage to cells caused by free 

radicals, especially the damage to DNA, may play a role in the development of cancer 

and other health conditions ( Harguindey et al., 2008; Lewis et al., 2010; Naskar et al., 

2011; Seo and Park, 2020). A free radical is defined as an atom of unstable or unpaired 

electron. This unstable radical can be stabilized by pairing with electrons from 

biological macromolecules such as lipids, DNA, and proteins thereby resulting to 

damage of these macromolecules (Lin et al., 2020; Lin et al., 2015). This free radical 

cell damage is achievable when the cellular antioxidant defence system is weakened.  

Generally, all biological system is endowed with innate antioxidant defence mechanisms 

that protects the cells from free radical attack and remove damaged molecules. 

However, these mechanisms can be ineffective as a result of frequent assaults by free 

radicals (Naskar et al., 2011; Rahman et al., 2015).  

 

Antioxidants are known to prevent free radical attacks and preserve damaged cells by 

supplying electrons to free radical violated cells (Etti et al., 2017). Antioxidants not only 

protect cells from free radical damage, but they also convert excessive radicals into 

scrappage and thereafter ejected from the system. The major antioxidant enzymes 

directly involved in the neutralization of excess free radicals in the body are: superoxide 

dismutase, catalase, glutathione peroxidase and glutathione reductase (Taylor et al., 

2010). The free radicals steal electrons from the antioxidant molecules in order to 

complete their electron complement, which causes those molecules to suffer damage. 

They serve as a natural "off" switch for the free radicals by making this sacrifice 

(Rahman et al., 2015). However, non-enzymatic antioxidants function by halting the 

chain reactions of these free radicals. Several non-enzymatic antioxidants include 

glutathione, vitamin C, vitamin e, plant polyphenols, and carotenoids among others.  

 

The DPPH antioxidative approach is extensively used to assess the antioxidant capacity 

of medicinal plants (Balasundram, 2006). By adding the extract in a concentration-

dependent way, the violet purple color in the DPPH assay is decreased to yellow color 
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diphenylpicryl hydrazine (Kedare and Singh, 2011; Kehinde et al., 2016). Because of 

the short time involved in the analysis, this approach has been widely utilized to 

examine antioxidant activity  (Aslan et al., 2013; Otto and Sicinski, 2017). Tables 3 and 

4 demonstrate that when catechin was compared to the six CP extracts tested for 

antioxidative capacities, the chloroform fraction of CP had the strongest DPPH 

antioxidative activity, mopping up DPPH radical in a concentration-dependent manner. 

Similarly, when comparing standard and chloroform fractions of CP, the chloroform 

fraction of CP showed the strongest reducing activity in scavenging ABTS cation radical 

in a concentration-dependent way. As a result, the chloroform fraction of CP displayed 

similar antioxidative activity when compared to standard catechin. The ability of CP 

extracts to mop up free radicals is most likely related to their hydrogen donating ability 

(Donaires, 2015; Saraiva et al., 2020). 

 

Chemopreventive effects of chloroform extract of Calliandra portoricensis on serum 

biochemicals, hormone profiles, antioxidants status, apoptotic, and inflammatory 

biomarkers in N-methyl-N-nitrosourea and benzo(a)pyrene-induced rats. 

The potential proliferation associated with NMU-induced mammary gland tumours 

using BP as a promoter in regular mammary gland tissue was also investigated. Findings 

from this study showed that animals receiving NMU and BP exhibited significant 

reductions in body weight gain. However, chloroform fraction of CP at a low dose 

showed progressive weight gain, which implies that CP improves and supports positive 

energy metabolism. Conversely, mammary gland tumours may interfere with the 

coordinated metabolic network in the animal, resulting in rapid weight loss and tissue 

wasting evidenced by the organo-somatic weight differences of the mammary tissue as 

well as in vincristine treated-rats (Glory and Thiruvengadam, 2012; Bishayee et al., 

2016; Kubatka et al., 2019). MDA is commonly used to assess the amount of free 

radical-induced lipid peroxidation. Results from this study revealed chloroform fraction 

of CP reduced the production of MDA in all the tissues (mammary, uterus and ovary) of 

the experimental animals. These data further supports and stipulates the antioxidant 

capacity of chloroform fraction of CP in rats carcinoma. The drastic elevation in 

malondialdehyde levels in all the tissues result into complementary reduction in 

enzymatic and non-enzymatic defense mechanism which further corroborates previous 

reports (Length, 2012; You et al., 2017). Precisely, drastic depletion in catalase, reduced 

glutathione, total sulphydryl, superoxide dismutase, glutathione peroxidase and 
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glutathione-S-transferase activities was detected in NMU and BP-administered rats in all 

the tissues indicating a compromised antioxidant defense system.  

BC is assumed to be caused by chronic inflammation, which has long been thought to 

have a role in the initiation and development of the disease. (Balkwill and Mantovani, 

2001; Visser et al., 2005; Calogero et al., 2007; Schetter et al., 2010). Numerous studies 

show a link between BC, inflammation, and infertility. (Donaires, 2015; Pei et al., 

2015). Inflammation is frequently linked to the onset and spread of cancer. 

Inflammations is known to recruit immune cells which release cytokines and 

chemokines to the site of inflammation (Coussens and Werb, 2002; Visser et al., 2005). 

Furthermore, tumours may facilitates components of inflammatory process to stimulate 

angiogenesis, inhibit apoptosis, and promote proliferation and metastasis (Balkwill and 

Mantovani, 2001; Naskar et al., 2011). Results from this study demonstrates elevation in 

nitric oxide, malondialdehyde, and myeoloperoxidase activity in NMU and BP-treated 

groups. Similarly, interleukins (IL-1beta and IL-6) were drastically upregulated in 

groups treated with NMU and BP. This corrobolate Donaires, (2015) and Manral et al., 

(2016), reports who found that interleukin overexpression promotes cancerous 

characteristics in Notch-3 generating progenitor cells from human ductal BC and normal 

mammary tissue. In addition, cells that are genomically altered and harmful to the body 

can be eliminated through apoptosis.  

 

Generally, it has been documented that too little apoptosis or too much apoptosis could 

impose a high threat to cells resulting into cancer and neurodegeration (Harguindey et 

al., 2008; Schetter et al., 2010;  Seo and Park, 2020). The results form this study showed 

depletion in apoptotic activities evidenced by down-regulation in BAX, Caspases-3, -9, 

and p53 in NMU and BP exposed groups. In the NMU and BP-administered groups, 

however, there was an increase in BCL-2 expression. Similarly, drastic over expression 

in β-catenin activity as well as up regulation in COX-2, and iNOS activities was seen in 

NMU and BP-treated groups. Mandal et al., (2017) discovered that cyclooxygenase-2 is 

involved in tumorigenesis and apoptosis in human cancers, and these data back up their 

findings. Co-treament with chloroform  fraction of CP intrestingly ameilorated NMU 

and BP altered apoptotic and inflammatory activites in the experimental animals.  

 

BC has been connected to a variety of etiological factors, including hormonal factors, 

family history, lactation, and obesity, among others (Younglai et al., 2005; Troisi et al., 
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2007). However, many of these established risk factors are associated to hormones most 

importantly estrogens (Akingbemi and Hardy, 2001; Giwercman, 2011). Early menarche 

as well as late menopause in women have been reported to expose the body to estrogen 

for longer periods of time, increasing the risk of developing BC (Arntzen et al., 1998; 

Vatten et al., 2002). The importance of a high concentration of endogenous estradiol in 

BC incidence has also been highlighted by growing evidence, it shows the link between 

a woman's BC risk and the levels of estrogen and progesterone produced by her ovaries  

(Yin et al., 2019).  In the NMU and BP-treated groups, we found elevated amounts of 

prolactin, progesterone, follicle stimulating hormones, and lutenizing hormones in the 

ovarian, uterine, and mammary glands. This findings further corroborates reports by 

Fowler et al., (2012) and Hauser et al., (2015). Whereas, co-treatment with CP 

interstingly mitigated NMU and BP altered sex hormones levels. 

 

Further research on the root bark of the chloroform fraction of CP shows for the first 

time that CP has a notable prospective curative effect in a chemically-induced mammary 

tumorigenesis model, as well as in BC cells in vitro.  Our findings show that daily oral 

intake of CP can drastically slow the progression of mammary tumors in rats. When 

compared to a negative control group, consuming CP daily for two weeks reduced breast 

tumor incidence, neck metastasis, and burden, as demonstrated by a reduction in the 

number of tumors in animals having tumors, as well as tumor volume and weight (NMU 

and BP). You et al., (2017); Lin et al., (2017) and Tuli et al., (2019) found that neem oil 

was cytotoxic to BC cells and prevented dimethylbenz(a)anthracene-induced BC in 

high-fat/sucrose-fed Wistar rats. Furthermore, we observed a slight increase in liver 

toxicity parameters (ALT, AST and T-BIL levels) in groups induced with NMU and BP 

compared to control groups and subsequently restored near control level upon post-

treatment with CP. These results corroborates previous findings by Adaramoye et al., 

(2017) and clearly indicates chloroform fraction of CP restored and protects liver 

intergrity .  

 

Anti-proliferative, antioxidative, and apoptotic effects of chloroform fraction of 

Calliandra portoricensis on MCF-7 cell line and cell lysates. 

Given that CP (chloroform fraction) co-treatment effectively reduced NMU and BP-

induced tumor development and accession of various proliferative and pro-apoptotic 

proteins in an in vivo tumor investigation, the anti-proliferative impact of CP on human 
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ER-positive breast adenocarcinoma (MCF-7) cells was presented in Table 9. The 

findings revealed that exposing BC cells to CP for 72 hours inhibited their proliferation 

in a dose-dependent way. The apoptosis of BC cells was considerably boosted after 

treatment with 100 µg/ml CP. This suggests that receptors for estrogen play a role in 

CP's cytotoxicity-inducing mechanism. When compared to Control, the cell viability 

and survival rate at 100 µg/ml CP was fully reduced by 87.5%, equal to the standard 

treatment Vincristine (87.6%), implying that CP inhibit BC cell growth by triggering 

apoptosis (Table 9). As a result, apoptosis induction is considered as a strategy for 

cancer control. We also found that CP inhibits IL-1beta production as well as oxidative 

stress indicators MPO and LPO, along with activation of anti-oxidant proteins and 

apoptotic activity. SOD, CAT; BAX, caspase-3, -9 activities in vitro using MCF-7 cell 

lysate. These results further supports our previous findings from in vivo study.  

 

Curative effects of chloroform fraction of Calliandra portoricensis on antioxidant 

parameters, apoptotic, and inflammatory indices in N-methyl-N-nitrosourea and 

benzo(a)pyrene-induced rats 

Findings from this study revealed that one of the possible mechanisms of anti-

tumorigenic and anti-proliferative action of CP chloroform fraction in vivo and in vitro 

is reducing activities of generated free radicals. Exposure to chemical carcinogens such 

as N-methyl-N-nitrosourea and 7,12-dimethylbenz(a)thracene produces free radicals, or 

reactive oxygen species, according to numerous studies (Kedare and Singh, 2011; Pe et 

al., 2012; Opdahl et al., 2012). As a result, maintaining a balance between oxidants and 

antioxidants is critical for appropriate body system physiological performance. When 

the body's ability to regulate free radicals is overwhelmed, a situation known as 

oxidative stress develops. As a result, free radicals may be able to permeate lipids, 

proteins, or DNA, causing a wide range of human diseases, such as cancer (Lobo et al., 

2010; Farombi and Owoeye, 2011). On this point, the antioxidant potential of CP's 

chloroform fraction was assessed using two methods: (1) SOD, GPx, GSH, TSH, GST, 

and CAT (antioxidant enzyme activities); and (2) MDA, MPO, NO, and LPO 

(biochemicals). Following NMU and BP treatment, there was a considerable drop in the 

enzyme activity of SOD, GST, and CAT, as well as a modest decrease in the activity of 

GPx, GSH, and TSH levels in the mammary tissues. The enzymatic activation was 

completely induced after treatment with chloroform fraction of CP, just as it was in the 

control group and with the standard drug.  Also, NMU and BP significantly increased 
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MDA, MPO and NO levels both in the serum and mammary tissues but these increases 

were completely blocked by post treatment with CP. These results indicate a strong 

capacity of chloroform fraction of CP on anti-oxidative stress, which further 

corroborates with previous reports by Adaramoye et al., (2017). 

 

The disruption of homoeostatic molecular signaling pathways by carcinogens resulting 

into tumour formation due to physiological alterations in the cells is known as 

tumourigenesis (Zhou et al.,  2014; Li et al., 2019). According to Siegel and colleagues, 

NMU and BP administration generates severe oxidative stress in the mammary gland, 

which triggers the release of a number of transcriptional regulators and enhances the 

production of genes involved in cell proliferation, induce apoptosis, and infiltration 

(Ouyang et al., 2012).  NF-kB is a transcription factor that is activated in response to a 

range of stimuli (Lang et al., 2007; Perkins and Barre, 2007; Shah et al., 2014). When 

NF-kB is activated, genes involved in cell death resistance, cell growth and longevity, 

vasculature, invasion, and inflammation are produced, all of which contribute to tumor 

formation. (Letai, 2016; Kowalczyk et al., 2019; Song et al., 2020). NF-kB activity is 

stimulated in ER-negative BC, according to several investigations (Rayet and Ge, 1999; 

Li et al., 2012). In our current findings, we demonstrated significant reduction in NF-kB 

expression in the tumor of chloroform fraction of CP treated rats. This is in consistent 

with previous report by Mandal and Bishayee, (2015). Furthermore, NMU and BP 

drastically down-regulates BAX, p53, and caspase-3 activities after inducing mammary 

gland tumors. 

 

The down-regulated expression of these proteins was shown to be normalized after 

treatment with CP (chloroform fraction). In a number of studies, iNOS has been linked 

to a worse prognosis in women with BC by increasing tumor aggresivity, and it has also 

been linked to the origin of malignancy. Overexpression of iNOS has thus been 

discovered in a variety of cancers. iNOS overexpression, on the other hand, was 

detected in roughly 15% of affected individuals, and since then has become a key 

indicator of chemoresistance and short survival in women with BC (Zhou et al., 2014). 

The aberrant activation of the iNOS and NF-kB pathways is connected to tumorigenesis, 

medication resistance, and carcinoma development (Cao and Karin, 2003). Our findings 

from this study showed that post-treatment with CP completely down-regulated iNOS 

expression. The high quantities of anthocyanin and polyphenols in CP extract likely 
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contributed to these decreases probably through cancer cell removal by modification of 

signaling pathways, inhibition of cell cycle events, and apoptosis induction. Polyphenols 

also regulate the activities of enzymes involved in tumor cell proliferation (Rahman et 

al., 2015). Our findings imply that CP has anti-inflammatory properties in BC models.  

 

A mammary gland tumor tissue histological analysis revealed severe cancerous 

epithelium with piknotic nucleus and dense nucleocytoplasm. The uterus exhibited a 

highly infiltrated endometrial gland with inflamed stroma cells in the NMU and BP-

treated groups, while the ovarian cyto-structure revealed stiff ovarian tissue as well as 

arterial constriction with degraded cells.  However, treatments with chloroform fraction 

of CP mitigated and reversed the carcinogrnic effect of both NMU and BP. The 

histopathological findings further corroborate the biochemical data and previous 

findings.  
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CHAPTER SIX 

 

SUMMARY, CONCLUSION AND RECOMMENDATIONS 

 

6.1 SUMMARY 

It can be deduced from the sequence of experiments conducted in this study that: 

1. Administration of methanol crude extract of CP reduces inflammation and oxidative 

stress caused by N-nitroso-N-methylurea. Data from this study suggests methanol 

crude extract of CP at all doses attenuated estrogen receptor, progesterone receptor 

and epidermal growth factor receptor-2 activities in a dose-dependent manner. 

2. The chloroform fraction of CP exhibited the best capacity to neutralize ABTS and 

DPPH radicals when compared to other extracts. CP extracts, according to the 

research, exhibit proton-donating characteristics that could work as free radical 

inhibitors or scavengers, possibly acting as primary antioxidants. 

3. Co-administration of chloroform fraction of CP restored the altered antioxidant 

status, up-regulated pro-apoptotic proteins, down-regulated inflammatory markers 

and reproductive hormones respectively in MNU and BP-groups. 

4. Chloroform fraction of CP inhibited cell viability and survival rate at 100 μg/ml CP 

by 87.5% similar to standard drug Vincasar. 
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5. Post-treatment with chloroform fraction of CP completely induced the enzymatic 

activation, attenuated liver marker enzymes similar to vehincle and standard drug in 

MNU and BP-administered rats. 

6. Following CP treatment, MNU and BP-induced tumor development and expression 

of various pro-proliferative and anti-apoptotic proteins were considerably reduced. 

 

6.2 CONCLUSION 

Conclusively, administration of N-nitrosourea-N-methyl and benzo(a)pyrene caused 

depletion in antioxidant status, and apoptotic proteins; elevated hormones, inflammatory 

indices, and hormone receptors as well as causing disruption of cytoarchitecture of the 

mammary, ovary and uterus tissues. However, CP extracts protect the mammary gland, 

uterus and ovary evidenced by decrease in reproductive hormones and its receptors 

activities, down-regulated inflammatory markers, elevated antioxidants activities as well 

as induction of apoptosis. 

 

6.3 RECOMMENDATIONS 

I hereby recommend from this findings that: 

1. Early diagnosis of breast cancer should be encouraged as early detection and 

treatment could halt progression. 

2. Traditionally, C. portoricensis can be processed as herbal mixture for managing 

breast diseases and other related diseases. 

3. The active compound responsible for anti-proliferative effect of C. portoricensis 

should be investigated. 

 

6.4 CONTRIBUTIONS TO KNOWLEDGE 

1. The findings from this study added to the scientific knowledege by confirming the 

protective effects of  C. portoricensis in animal studies and in vitro models. 

2. Free radical scavenging activity revealed that chloroform fraction of CP as the most 

potent with highest reducing potential by scavenging DPPH and ABTS cation 

radical in a concentration-dependent manner. 

3. The chloroform fraction of CP inhibits anti-apoptotic proteins, inflammatory 

markers, oxidative stress, and reproductive hormones, as well as activating pro-

apoptotic proteins, chemopreventing MNU and BP-induced carcinogenesis. 
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4. The CP may be used to manage mammary, uterine and ovarian  toxicity. 

5. Co-administration of MNU and BP showed severe metastatic cancerous mammary 

glandular tissues, a model that may be useful in cancer biology. 

6. A first-of-its-kind finding is that posttreatment with CP mitigates the damaging 

effects of MNU and BP-induced tumorigenesis in experimental animals. 
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APPENDICES 

Appendix 1 

3.3 Weighed DPPH (39.4mg), dissolved in methanol and filled to 100 mL with 

methanol. 

Appendix 2 

3.4 In the dark, ABTS (0.054 g) was weighed and dissolved in dH20 (15 mL). Also 

weighed and dissolved in 15mL dH20 was 0.0099 g of potassium persulphate. 

Appendix 3 

3.5.1 Buffer (phosphate buffer-100 mmol/L, pH 7.4, L-Aspartate – 100mmol/L, α-

oxoglutarate-2 mmol/L), 2,4-dinitrophenylhydrazine-2 mmol/L, Sodium hydroxide- 0.4 

mol/L. 

Appendix 4 

3.5.2 Buffer (phosphate buffer-100 mmol/L, pH 7.4, L-Alanine – 100mmol/L, α-

oxoglutarate-2 mmol/L), 2,4-dinitrophenylhydrazine-2 mmol/L, Sodium hydroxide- 0.4 

mol/L. 
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Appendix 5 

3.5.3 R1 – consitutes sulphanilic acid (29 mmol/L) and hydrochloric acid (0.17μL); 

R2- constitutes sodium nitrite (38.5 mmol/l); R3- constitutes caffeine (0.26 mol/L) and 

sodium benzoate (0.52 mol/L); R4- constitutes tartrate (0.93mol/L) and sodium 

hydroxide (1.9 μL)  

Appendix 6 

3.5.4 (a) LDH Substrate Mix- Reconstitute in 1 mL of water. 

(b) 1.25 mM NADH standard- Reconstitute in 400 μL of water  

(c) LDH Positive Vehincle- Reconstitute in 200 μL of LDH assay buffer before 

use. 

 

 

Appendix 7 

3.6.1 NaCl solution (0.9% normal saline) 

Dissolution of 2.7 g of NaCl in dH2O (little amount) was filled to 300 mL capacity with 

dH2O. 

 NaOH (0.2M) 

Dissolution of 8 g of NaOH in dH2O (little amount) was filled to a litre capacity with 

dH2O. 

1. Biuret Reagent 

In 500 mL of 0.2 M NaOH, copper sulphate, CuSO4.5H2O (3 g) and sodium-potassium 

tartrate, C4H4KNaO6 (5 g ) were dissolved. To the mixture, KI (5 g) was added and then 

filled with 0.2 M NaOH to make it 1 mL capacity. 

2. Stock Bovine Serum Albumin (BSA) Solution 

To make a stock solution of 1 mg/mL, BSA (0.1g) was dissolved in a normal saline 

(little quantity) and filled to 100 mL capacity.  
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Appendix 8 

3.6.2 Trichloroacetic Acid (30% of TCA) 

DH2O was used to dissolve TCA and make up to 30ml capacity with dH2O. 

1. Thiobarbituric Acid (0.075% of TBA in 0.1M HCL) 

2. To make this, TBA (0.225 g ) was dissolved in HCL (0.1 M) and dilute to 30 

mL capacity with dH2O. 

3. Tris-KCL (0.15 M, pH 7.4) 

KCL (1.12 g ) and Tris base (2.36 g) were dissolved in dH20 and used to make a 100 mL 

solution. After then, the pH was raised to 7.4. 

Appendix 9 

3.6.3 Carbonate buffer (0.05M, pH 10.2) 

In 900 mL of dH2O, Na2CO3.10H20 (14.3 g ) and NaHCO3 (4.2 g) were dissolved. After 

adjusting the pH to 10.2, 1000 mL of distilled water was added. 

Epinephrine (0.3M) 

Epinephrine (0.0137 g) was dissolved in dH20 (200 mL) and filled to capacity with 

same. Before use, the solution was newly made. 

Appendix 10 

3.6.4 Phosphate buffer (0.05 M, pH 7.4) 

K2HP04 (0.696 g) and KH2P04 (0.265 g) dissolved in dH20 (90 mL) and filled to 100 

mL capacity at pH 7.4 

Hydrogen peroxide (19mM) 

This was made by dissolving 30 % H2O2 in 50 mL phosphate buffer and filling to 100 

mL with the same solution. 

Appendix 11 

3.6.5 1-Chloro-2,4-dinitrobenzene (CDNB) 
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3.37 mg of CDNB was dissolved in one 1mL of ethanol to make 20 mM CDNB. 

Reduced Glutathione (0.1M) 

30.73 mg of GSH was dissolved in 1mL of phosphate buffer to make this.  

Phosphate buffer (0.1 M; pH 6.5) 

K2HPO4 (4.96 g) and KH2PO4 (9.73 g) were diluted with distilled water and filled to a 

capacity of 1000 mL, with a pH of 6.5. 

Appendix 12 

3.6.6 Sodiun azide (NaN3; 10mM) 

Dissolve NaN3 (0.0325 g ) in dH20 (50 mL) for the preparation.  

Reduced glutathione (GSH 4 mM) 

0.0123 g of GSH was weighed and dissolved in phosphate buffer to make this (10 mL). 

Hydrogen peroxide (H2O2; 2.5 mM) 

0.028 mL H2O2 was added to 100 mL distilled water for the preparation.  

Trichloroacetic acid (10%) 

2g trichloroacetic acid in 20 mL distilled water was used to make this mixture. 

Dipotassium Hydrogen orthophosphate K2HPO4 (0.3 M) 

This was produced by mixing K2HPO4 (5.23 g) in dH2O (100 mL capacity). 

Ellman’s reagent 

Ellman's reagent (0.04 g) was dissolved in phosphate buffer (100 mL) to make this. 

Phosphate buffer 

This was made by adding K2HPO4 (0.992 g) and KH2PO4 (1.946 9) in dH2O (200 mL 

capacity) and with a pH of 7.4. 

Appendix 13 

3.6.7 Glutathione Working Standard 
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 Phosphate buffer (0.1M; 100 mL; pH 7.4) was used to dissolved 40 g of GSH. 

1. Phosphate Buffer (0.1M; pH 7.4) 

a. Na2HPO4.2H20 (7.1628 g; mol. Wt. 358.22) was dissolved in dH2O (200 mL 

capacity) to make Na2HPO4.2H20 (0.1M; mol. Wt. 358.22). 

b. NaH2PO4.2H2O (1.5603 g; mol. Wt. 156.03) was dissolved in dH2O (100 mL 

capacity) to make 0.1M NaH2PO4.2H2O (mol. Wt. 156.03). 

2. Finally, by combining solutions (a) and (b) and setting the pH to 7.4, 0.1M 

phosphate buffer was created. 

Ellman’s Reagent [5,5’-dithiobis-(-2-nitrobenzoic acid) DTNB] 

A total of 40 mg of DTNB was dissolved in 0.1M phosphate buffer and filled to a 

capacity of 100 mL. 

Precipitating Solution 

4 % sulphosalicyclic acid was obtained by dissolution of 4 g of sulphosalicyclic acid in 

dH2O of 100 mL capacity (C7H6O6S.2H2O, Mol Wt. 254.22). 

Appendix 14 

3.6.8 0.1% N-(1-naphthyl) ethylenediamine dihydrochloride 

In a small amount of water, 0.1g of 0.1 %  N-(1-naphthyl) ethylenediamine 

dihydrochloride was mixed with dH2O and filled to 100mL capacity. 

1. 5% Phosphoric Acid 

To 95 mL of distilled water, 5 mL concentrated phosphoric acid was added. 

2. 1% Sulphanilamide 

In 100 mL of 5% phosphoric acid, 1 g of sulphanilimide was dissolved. Greiss reagent 

was made by combining equal parts of solutions 1 and 3. (1:1). 

3. 20 mmol/L Sodium Nitrite 

In a small amount of water, 13.8 mg of sodium nitrite (NaNO2) was dissolved and made 

up to 100mL. 

Appendix 15 
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3.6.9 O-dianisidine 

O-dianisidine dihydrochloride (0.0167 g) was mixed in phosphate buffer (100 mL 

capacity) for the preparation. 

Phosphate Buffer (0.1 M;  pH 7.4) 

 K2HPO4 (486 mg) and KH2PO4 (973 mg ) were dissolved in dH2O and filled to a 

capacity of 100 mL for the preparation. 

Appendix 16 

3.8 (a) 10% Trichloroacetic Acid (TCA) 

 TCA (10 g) was dissolved in distilled water and used to make a 1000 ml solution. 

(b) 5% TCA 

TCA (5 g) was dissolved in distilled water and used to make a total of 100 ml. 

(c)  DPA Reagent 

150 mg diphenylamine was dissolved in mixture of 10 mL glacial acetic acid, 150 µL 

concentrated H2SO4 and 50 µl of acetaldehyde solution. 150 mg diphenylamine was 

dissolved in a solution of 10 mL glacial acetic acid, 150 µL concentrated H2SO4, and 50 

µL acetaldehyde 

 


